×

Presynaptic spontaneous activity enhances the accuracy of latency coding. (English) Zbl 1414.92105

Summary: The time to the first spike after stimulus onset typically varies with the stimulation intensity. Experimental evidence suggests that neural systems use such response latency to encode information about the stimulus. We investigate the decoding accuracy of the latency code in relation to the level of noise in the form of presynaptic spontaneous activity. Paradoxically, the optimal performance is achieved at a nonzero level of noise and suprathreshold stimulus intensities. We argue that this phenomenon results from the influence of the spontaneous activity on the stabilization of the membrane potential in the absence of stimulation. The reported decoding accuracy improvement represents a novel manifestation of the noise-aided signal enhancement.

MSC:

92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abbott, L., & Dayan, P. (1999). The effect of correlated variability on the accuracy of a population code. Neural Comput., 11(1), 91-101. ,
[2] Adrian, E. D. (1928). The basis of sensation. New York: Norton.
[3] Aihara, K., & Tokuda, I. (2002). Possible neural coding with interevent intervals of synchronous firing. Phys. Rev. E, 66(2), 026212. ,
[4] Amari, S., & Nakahara, H. (2005). Difficulty of singularity in population coding. Neural Comput., 17(4), 839-858. , · Zbl 1079.62007
[5] Baker, S. N., & Gerstein, G. L. (2001). Determination of response latency and its application to normalization of cross-correlation measures. Neural Comput., 13, 1351-1377. , · Zbl 0963.68642
[6] Brunel, N., Hakim, V., & Richardson, M. J. (2003). Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Phys. Rev. E, 67(5), 051916. ,
[7] Chastrette, M., Thomas-Danguin, T., & Rallet, E. (1998). Modelling the human olfactory stimulus-response function. Chem. Senses, 23, 181-196. ,
[8] Chhikara, R. S., & Folks, J. L. (1989). The inverse gaussian distribution: Theory, methodology, and applications. New York: Marcel Dekker. · Zbl 0701.62009
[9] Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience. Cambridge, MA: MIT Press. · Zbl 1051.92010
[10] Durant, S., Clifford, C.W.G., Crowder, N. A., Price, N.S.C., & Ibbotson, M.R. (2007). Characterizing contrast adaptation in a population of cat primary visual cortical neurons using Fisher information. J. Opt. Soc. Am. A, 24, 1529-1537. ,
[11] Frank, S. A. (2013). Input-output relations in biological systems: Measurement, informatiom and the Hill equation. Biology Direct, 8, 31.
[12] Friedman, H. S., & Priebe, C. E. (1998). Estimating stimulus response latency. J. Neurosci. Methods, 83, 185-194. ,
[13] Furukawa, S., & Middlebrooks, J. C. (2002). Cortical representation of auditory space: Information-bearing features of spike patterns. J. Neurophysiol., 87(4), 1749-1762. ,
[14] Gammaitoni, L., Hänggi, P., Jung, P., & Marchesoni, F. (1998). Stochastic resonance. Reviews of Modern Physics, 70(1), 223-287. ,
[15] Gawne, T. J., Kjaer, T. W., & Richmond, B. J. (1996). Latency: Another potential code for feature binding in striate cortex. J. Neurophysiol., 76(2), 1356-1360.
[16] Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models. Cambridge: Cambridge University Press. , · Zbl 1100.92501
[17] Gerstein, G., & Mandelbrot, B. (1964). Random walk models for the spike activity of a single neuron. Biophys. J., 4, 41-68. ,
[18] Gollisch, T., & Meister, M. (2008). Rapid neural coding in the retina with relative spike latencies. Science, 319(5866), 1108-1111. ,
[19] Greenwood, P. E., & Lansky, P. (2005). Optimum signal in a simple neuronal model with signal-dependent noise. Biol. Cybern., 92(3), 199-205. , · Zbl 1101.92009
[20] Grémiaux, A., Nowotny, T., Martinez, D., Lucas, P., & Rospars, J.-P. (2012). Modelling the signal delivered by a population of first-order neurons in a moth olfactory system. Brain Res., 1434, 123-135. ,
[21] Grün, S., & Rotter, S. (2010). Analysis of parallel spike trains. New York: Springer. , · Zbl 1446.92176
[22] Hansson, B. (1995). Olfaction in lepidoptera. Experientia, 51(11), 1003-1027. ,
[23] Jenison, R. L. (2001). Decoding first-spike latency: A likelihood approach. Neurocomputing, 38, 239-248. ,
[24] Johnson, D. H., & Ray, W. (2004). Optimal stimulus coding by neural populations using rate codes. J. Comput. Neurosci, 16(2), 129-138. ,
[25] Kostal, L., & Lansky, P. (2015). Coding accuracy is not fully determined by the neuronal model. Neural Comput., 27, 1051-1057. , · Zbl 1414.92100
[26] Kostal, L., Lansky, P., & Pilarski, S. (2015). Performance breakdown in optimal stimulus decoding. J. Neural Eng., 12(3), 036012. ,
[27] Kostal, L., Lansky, P., & Zucca, C. (2007). Randomness and variability of the neuronal activity described by the Ornstein-Uhlenbeck model. Netw. Comput. Neural Syst., 18, 63-75. ,
[28] Lansky, P., & Greenwood, P. E. (2005). Optimal signal estimation in neuronal models. Neural Comput., 17(10), 2240-2257. , · Zbl 1079.62112
[29] Lansky, P., & Greenwood, P. E. (2007). Optimal signal in sensory neurons under an extended rate coding concept. BioSystems, 89(1), 10-15. ,
[30] Lansky, P., & Sacerdote, L. (2001). The Ornstein-Uhlenbeck neuronal model with signal-dependent noise. Physics Letters A, 285, 132-140. , · Zbl 0969.92503
[31] Levakova, M. (2016). Effect of spontaneous activity on stimulus detection in a simple neuronal model. Math. Biosci. Eng., 13, 551-568. , · Zbl 1348.62069
[32] Levakova, M., Ditlevsen, S., & Lansky, P. (2014). Estimating latency from inhibitory input. Biol. Cybern., 108, 475-493. , · Zbl 1328.92020
[33] Levakova, M., Tamborrino, M., Ditlevsen, S., & Lansky, P. (2015). A review of the methods for neuronal response latency estimation. BioSystems, 136, 23-34. ,
[34] Lindner, B., Schimansky-Geier, L., & Longtin, A. (2002). Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Phys. Rev. E, 66(3), 031916. ,
[35] McDonnell, M. D., & Abbott, D. (2009). What is stochastic resonance? Definitions, misconceptions, debates and its relevance to biology. PLoS Comput. Biol., 5(5), e1000348. ,
[36] McDonnell, M. D., & Stocks, N. G. (2008). Maximally informative stimuli and tuning curves for sigmoidal rate-coding neurons and populations. Phys. Rev. Lett., 101(5), 058103. ,
[37] McDonnell, M. D., & Ward, L. M. (2011). The benefits of noise in neural systems: Bridging theory and experiment. Nature Reviews Neuroscience, 12(7), 415-426. ,
[38] Miura, K., Tsubo, Y., Okada, M., & Fukai, T. (2007). Balanced excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations. J. Neurosci., 27(50), 13802-13812. ,
[39] Nelken, I., Chechik, G., Mrsic-Flogel, T. D., King, A. J., & Schnupp, J. W. (2005). Encoding stimulus information by spike numbers and mean response time in primary auditory cortex. J. Comput. Neurosci., 19(2), 199-221. , · Zbl 1098.92015
[40] Nizami, L. (2002). Estimating auditory neuronal dynamic range using a fitted function. Hearing Res., 167(1), 13-27. ,
[41] Panzeri, S., Ince, R. A., Diamond, M. E., & Kayser, C. (2014). Reading spike timing without a clock: Intrinsic decoding of spike trains. Phil. Trans. R. Soc. B, 369(1637), 20120467. ,
[42] Panzeri, S., Petersen, R. S., Schultz, S. R., Lebedev, M., & Diamond, M. E. (2001). The role of spike timing in the coding of stimulus location in rat somatosensory cortex. Neuron, 29(3), 769-777. , · Zbl 1007.68773
[43] Pawlas, Z., Klebanov, L. B., Beneš, V., Prokešová, M., Popelář, J., & Lansky, P. (2010). First-spike latency in the presence of spontaneous activity. Neural Comput., 22(7), 1675-1697. , · Zbl 1192.62236
[44] Petersen, R. S., Panzeri, S., & Diamond, M. E. (2001). Population coding of stimulus location in rat somatosensory cortex. Neuron, 32(3), 503-514. ,
[45] Petersen, R. S., Panzeri, S., & Diamond, M. E. (2002). The role of individual spikes and spike patterns in population coding of stimulus location in rat somatosensory cortex. BioSystems, 67(1), 187-193. ,
[46] Pilarski, S., & Pokora, O. (2015). On the Cramér-Rao bound applicability and the role of Fisher information in computational neuroscience. BioSystems, 136, 11-22. ,
[47] Rao, C. R. (2002). Linear statistical inference and its applications (2nd ed.). New York: Wiley.
[48] Reich, D. S., Mechler, F., & Victor, J. D. (2001). Temporal coding of contrast in primary visual cortex: When, what, and why. J. Neurophysiol., 85(3), 1039-1050.
[49] Rospars, J.-P., Grémiaux, A., Jarriault, D., Chaffiol, A., Monsempes, C., Deisig, N., Anton, S., Lucas, P., & Martinez, D. (2014). Heterogeneity and convergence of olfactory first-order neurons account for the high speed and sensitivity of second-order neurons. PLoS Comput Biol, 10(12), e1003975. ,
[50] Rospars, J.-P., Lansky, P., Duchamp, A., & Duchamp-Viret, P. (2003). Relation between stimulus and response in frog olfactory receptor neurons in vivo. Eur. J. Neurosci., 18(5), 1135-1154. ,
[51] Sengupta, B., Laughlin, S. B., & Niven, J. E. (2013). Balanced excitatory and inhibitory synaptic currents promote efficient coding and metabolic efficiency. PLoS Comput. Biol., 9(5), e1003263. ,
[52] Seung, H. S., & Sompolinsky, H. (1993). Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA, 90(22), 10749-10753. ,
[53] Stemmler, M. (1996). A single spike suffices: The simplest form of stochastic resonance in model neurons. Network, 7(4), 687-716. , · Zbl 0884.92004
[54] Stocks, N. (2000). Suprathreshold stochastic resonance in multilevel threshold systems. Phys. Rev. Lett., 84(11), 2310-2313. ,
[55] Stocks, N. (2001). Information transmission in parallel threshold arrays: Suprathreshold stochastic resonance. Phys. Rev. E, 63(4), 041114. ,
[56] Tamborrino, M., Ditlevsen, S., & Lansky, P. (2012). Identification of noisy response latency. Phys. Rev. E, 86, 021128. ,
[57] Tamborrino, M., Ditlevsen, S., & Lansky, P. (2013). Parametric inference of neuronal response latency in presence of a background signal. BioSystems, 112(3), 249-257. ,
[58] Tamborrino, M., Ditlevsen, S., & Lansky, P. (2015). Parameter inference from hitting times for perturbed Brownian motion. Lifetime Data Anal., 21(3), 331-352. , · Zbl 1322.62091
[59] Theunissen, F., & Miller, J. P. (1995). Temporal encoding in nervous systems: A rigorous definition. J. Comput. Neurosci., 2(2), 149-162. ,
[60] Toyoizumi, T., Aihara, K., & Amari, S. (2006). Fisher information for spike-based population decoding. Phys. Rev. Lett., 97(9), 098102. ,
[61] Tuckwell, H. C. (1988). Introduction to theoretical neurobiology, vol. 2: Nonlinear and stochastic theories. Cambridge: Cambridge University Press. · Zbl 0647.92009
[62] Van Rullen, R., Guyonneau, R., & Thorpe, S. (2005). Spike times make sense. Trends Neurosci., 28, 1-4. ,
[63] Wainrib, G., Thieullen, M., & Pakdaman, K. (2010). Intrinsic variability of latency to first-spike. Biol. Cybern., 103, 43-56. , · Zbl 1266.92024
[64] Wilke, S. D., & Eurich, C. W. (2002). Representational accuracy of stochastic neural populations. Neural Comput., 14(1), 155-189. , · Zbl 0988.92010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.