×

Inference of the generalized-growth model via maximum likelihood estimation: a reflection on the impact of overdispersion. (English) Zbl 1425.92183

Summary: Recently, the generalized-growth model was introduced as a flexible approach to characterize growth dynamics of disease outbreaks during the early ascending phase. In this work, by using classical maximum likelihood estimation to obtain parameter estimates, we evaluate the impact of varying levels of overdispersion on the inference of the growth scaling parameter through comparing Poisson and negative binomial models. In particular, under exponential and sub-exponential growth scenarios, we evaluate, via simulations, the error rate of making an incorrect characterization of early outbreak growth patterns. Simulation results show that the ability to correctly identify early outbreak growth patterns can be affected by overdispersion even when accounted for using the negative binomial model. We exemplify our findings using data on five different outbreaks. Overall, our results show that estimates should be interpreted with caution when data are overdispersed.

MSC:

92D30 Epidemiology

Software:

pomp; incidence; Stata
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barlow, N. D., Non-linear transmission and simple models for bovine tuberculosis, J. Anim. Ecol., 69, 4, 703-713 (2000)
[2] https://cran.r-project.org/web/packages/bbmle/vignettes/mle2.pdf Accessed: 7 March 2017.
[3] Brauer, F., Mathematical epidemiology: past, present, and future, Infect. Dis. Modell., 2, 2, 113-127 (2017)
[4] Bretó, C., Modeling and inference for infectious disease dynamics: a likelihood-based approach, Stat. Sci., 33, 1, 57-69 (2018) · Zbl 1407.62397
[5] Bretó, C.; He, D.; Ionides, E. L.; King, A. A., Time series analysis via mechanistic models, Ann. Appl. Stat., 3, 1, 319-348 (2009) · Zbl 1160.62080
[6] Capasso, V.; Serio, G., A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42, 1-2, 43-61 (1978) · Zbl 0398.92026
[7] Chowell, G., Fitting dynamic models to epidemic outbreaks with quantified uncertainty: a primer for parameter uncertainty, identifiability, and forecasts, Infect. Dis. Modell., 2, 3, 379-398 (2017)
[8] Chowell, G.; Hincapie-Palacio, D.; Ospina, J.; Pell, B.; Tariq, A.; Dahal, S.; Moghadas, S.; Smirnova, A.; Simonsen, L.; Viboud, C., Using phenomenological models to characterize transmissibility and forecast patterns and final burden of zika epidemics, PLoS Curr. (2016)
[9] Chowell, G.; Nishiura, H.; Bettencourt, L. M., Comparative estimation of the reproduction number for pandemic influenza from daily case notification data, J. R. Society Interface, 4, 12, 155-166 (2007)
[10] Chowell, G.; Sattenspiel, L.; Bansal, S.; Viboud, C., Mathematical models to characterize early epidemic growth: a review, Phys. Life Rev., 18, 66-97 (2016)
[11] Chowell, G.; Viboud, C., Is it growing exponentially fast? Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics, Infect. Dis. Modell., 1, 1, 71-78 (2016)
[12] Chowell, G.; Viboud, C.; Hyman, J. M.; Simonsen, L., The western africa ebola virus disease epidemic exhibits both global exponential and local polynomial growth rates, PLoS Curr. (2014)
[13] Chowell, G.; Viboud, C.; Simonsen, L.; Moghadas, S. M., Characterizing the reproduction number of epidemics with early subexponential growth dynamics, J. R. Society Interface, 13, 123, 20160659 (2016)
[14] Claeskens, G.; Hjort, N. L., Model Selection and Model Averaging (2008), Cambridge University Press.: Cambridge University Press. New York · Zbl 1166.62001
[15] Coulson, T.; Rohani, P.; Pascual, M., Skeletons, noise and population growth: the end of an old debate?, Trends Ecol. Evol., 19, 7, 359-364 (2004)
[16] Dinh, L.; Chowell, G.; Rothenberg, R., Growth scaling for the early dynamics of HIV/AIDS epidemics in Brazil and the influence of socio-demographic factors, J. Theor. Biol., 442, 79-86 (2018)
[17] Efron, B., Bootstrap methods: another look at the jackknife, Ann. Stat., 7, 1, 1-26 (1979) · Zbl 0406.62024
[18] Fasiolo, M.; Pya, N.; Wood, S. N., A comparison of inferential methods for highly nonlinear state space models in ecology and epidemiology, Stat. Sci., 31, 1, 96-118 (2016) · Zbl 1442.62349
[19] Ganyani, T.; Faes, C.; Chowell, G.; Hens, N., Assessing inference of the basic reproduction number in an SIR model incorporating a growth-scaling parameter, Stat. Med., 37, 29, 4490-4506 (2018)
[20] Ganyani, T.; Roosa, K.; Faes, C.; Hens, N.; Chowell, G., Assessing the relationship between epidemic growth scaling and epidemic size: the 2014-16 ebola epidemic in west africa, Epidemiol. Infect., 147 (2018)
[21] Gardner, W.; Mulvey, E. P.; Shaw, E. C., Regression analyses of counts and rates: poisson, overdispersed poisson, and negative binomial models., Psychol. Bull., 118, 3, 392-404 (1995)
[22] Held, L.; Bové, D. S., Applied Statistical Inference (2014), Springer Berlin Heidelberg · Zbl 1281.62005
[23] Hougaard, P.; Lee, M.-L. T.; Whitmore, G. A., Analysis of overdispersed count data by mixtures of poisson variables and poisson processes, Biometrics, 53, 4, 1225 (1997) · Zbl 0911.62101
[24] Kamvar, Z. N.; Cai, J.; Pulliam, J. R.; Schumacher, J.; Jombart, T., Epidemic curves made easy using the R package incidence, F1000Research, 8, 139 (2019)
[25] Keeling, M. J.; Rohani, P., Modeling Infectious Diseases in Humans and Animals (2008), Princeton University Press · Zbl 1279.92038
[26] King, A. A.; Nguyen, D.; Ionides, E. L., Statistical inference for partially observed Markov processes via the package pomp, J. Stat. Softw., 69, 12 (2016)
[27] Lloyd-Smith, J. O., Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases, PLoS ONE, 2, 2, e180 (2007)
[28] Long, S. J.; Long, J. S.; Freese, J., Regression Models for Categorical Dependent Variables using Stata (2006), Stata Press · Zbl 1277.62008
[29] McCullagh, P.; Nelder, J., Generalized Linear Models (1989), Chapman and Hall: Chapman and Hall London · Zbl 0744.62098
[30] Myung, I. J., Tutorial on maximum likelihood estimation, J. Math. Psychol., 47, 1, 90-100 (2003) · Zbl 1023.62112
[31] Piegorsch, W. W., Maximum likelihood estimation for the negative binomial dispersion parameter, Biometrics, 46, 3, 863 (1990)
[32] Roosa, K.; Luo, R.; and, G. C., Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study, Math. Biosci. Eng., 16, 5, 4299-4313 (2019) · Zbl 1497.92298
[33] Ross, G. J.S.; Preece, D. A., The negative binomial distribution, Statistician, 34, 3, 323 (1985)
[34] Saha, K.; Paul, S., Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics, 61, 1, 179-185 (2005) · Zbl 1077.62083
[35] Steiger, J. H., Beyond the F test: effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis., Psychol. Methods, 9, 2, 164-182 (2004)
[36] Viboud, C.; Simonsen, L.; Chowell, G., A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks, Epidemics, 15, 27-37 (2016)
[37] http://apps.who.int/gho/data/node.ebola-sitrep.ebola-country?lang=en Accessed: 1 June 2016.
[38] Willson, L. J.; Folks, J. L.; Young, J. H., Multistage estimation compared with fixed-sample-size estimation of the negative binomial parameter k, Biometrics, 40, 1, 109 (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.