×

Relative numerical ranges. (English) Zbl 1339.47008

Let \(H\) be a separable complex Hilbert space and let \(B(H)\) be the Banach algebra of all bounded linear operators on \(H\). The numerical range of \(S\in B(H)\) is the set \(W(S)=\left\{(Sx,x):\; ||x||\; =1\right\}\). It is known that the spectrum \(\sigma (S)\) of \(S\) is contained in \(W(S)\).
In this paper, the authors define a more general set, the numerical range of \(S\) relative to some operator \(T\in B(H)\) at a point \(r\in \sigma (|T|)\). Namely, this is the set \[ W_{T}^{\, r} (S)=\left\{\lambda \in {\mathbb C}:\exists (x_{n} ),\; ||x_{n} ||\; =1,\; \mathop{\lim }\limits_{n\to \infty } ||\; |T|x_{n} -r{\kern 1pt} x_{n} ||\; =0\; \; \text{and}\; \; \mathop{\lim }\limits_{n\to \infty } (S{\kern 1pt} x_{n} ,x_{n} )=\lambda \right\}. \] The authors prove various properties of this numerical range. In particular, \(W_{T}^{\, r} (S)\) is a non-empty convex subset of the closure of \(W(S)\). It is shown that the presence of 0 in \(W_{T}^{\, r} (S*T)\) gives a lower bound for the distance from \(T\) to the linear space spanned by \(S\).

MSC:

47A12 Numerical range, numerical radius
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benítez, C.; Fernández, M.; Soriano, M. L., Orthogonality of matrices, Linear Algebra Appl., 422, 155-163 (2007) · Zbl 1125.15026
[2] Bhatia, R.; Šemrl, P., Orthogonality of matrices and some distance problems, Linear Algebra Appl., 287, 77-85 (1999) · Zbl 0937.15023
[3] Bouldin, R., The essential minimal modulus, Indiana Univ. Math. J., 30, 513-517 (1981) · Zbl 0483.47015
[4] Bračič, J.; Diogo, C., Operators with a given part of the numerical range, Math. Slovaca (2015), in press
[5] Choi, M.; Li, C., Numerical ranges of the powers of an operator, J. Math. Anal. Appl., 365, 458-466 (2010) · Zbl 1188.47006
[6] Davidson, K. R., Nest Algebras, Res. Notes Math., vol. 191 (1988), Pitman: Pitman London · Zbl 0669.47024
[7] Diogo, C., Algebraic properties of the set of operators with 0 in the closure of the numerical range, Oper. Matrices, 9, 83-93 (2015) · Zbl 1314.47013
[8] Gustafson, K. E.; Rao, D. K.M., Numerical Range (1997), Springer-Verlag: Springer-Verlag New York
[9] Halmos, P. R., A Hilbert Space Problem Book (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0202.12801
[10] Horn, R. A.; Johnson, C. R., Topics in Matrix Analysis (1985), Cambridge University Press: Cambridge University Press Cambridge
[11] Knockaert, L., Necessary and sufficient conditions for the origin to belong to the numerical range of a matrix, WSEAS Trans. Math., 5, 1350-1352 (2006)
[12] Magajna, B., On the distance to finite-dimensional subspaces in operator algebras, J. Lond. Math. Soc., 47, 516-532 (1993) · Zbl 0742.47010
[13] Sain, D.; Paul, K.; Hait, S., Operator norm attainment and Birkhoff-James orthogonality, Linear Algebra Appl., 476, 85-97 (2015) · Zbl 1335.46008
[14] Stampfli, J. G., The norm of a derivation, Pacific J. Math., 33, 737-747 (1970) · Zbl 0197.10501
[15] Williams, J. P., Finite operators, Proc. Amer. Math. Soc., 26, 129-136 (1970) · Zbl 0199.19302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.