×

Smooth quintic spline approximation for nonlinear Schrödinger equations with variable coefficients in one and two dimensions. (English) Zbl 1380.65031

Summary: The present paper uses a relatively new approach and methodology to solve one and two dimensional nonlinear Schrödinger equations numerically. We use the horizontal method of lines and \(\theta\)-method, \(\theta\in [1/2,1]\) for time discretization that reduces the problem into an amenable system of ordinary differential equations. The resulting system of ODEs in space subsequently have been solved by quintic polynomial spline scheme. Convergence of the scheme in maximum norm is established rigorously. The convergence orders are \(\mathcal O(k+h_x^4+h_y^4)\) and \(\mathcal O(k^2+h_x^4+h_y^4)\), where \(k\) is the temporal grid size and \(h_x\) and \(h_y\) are spatial grid sizes, respectively. Matrix stability analysis shows that the method is conditionally stable. The efficacy of proposed approach has been confirmed with four numerical experiments, where comparison is made with some earlier works. It is clear that the results obtained are acceptable and are in good agreement with earlier studies. The present scheme is very simple, effective and convenient for obtaining numerical solution of Schrödinger equation.

MSC:

65D07 Numerical computation using splines
35Q55 NLS equations (nonlinear Schrödinger equations)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Infeld, E., Nonlinear waves: from hydrodynamics to plasma theory, Advances in nonlinear waves (1984), Pitman, Boston · Zbl 0542.76020
[2] Nore, C.; Abid, A.; Brachet, M., Small-scale structures in three-dimensional hydrodynamics and magnetohyrodynamic turbulenc (1996), Springer, Berlin
[3] Agrawal, G. P., Nonlinear fiber optics (2001), Academic Press, San Diego
[4] Saleh, B. E.A.; Teich, M. C., Fundamentals of fotonics (1991), Wiley-Interscience Publication: Wiley-Interscience Publication New York
[5] Sulem, C.; Sulem, P. L., The nonlinear Schrödinger equation: self-focusing and wave collapse (1999), Springer: Springer New York · Zbl 0928.35157
[6] Wheatley, J.; Buchanan, D. S.; Swift, G. W.; Migliori, A.; Hofler, T., Non-linear natural engine: model for thermodynamic processes in mesoscale systems, Proc Natl Acad Sci USA, 82, 7805-7809 (1985)
[7] Fordy, A. P., Soliton theory: a survey of results (1990), Manchester Univ. Press: Manchester Univ. Press Manchester
[8] Chen, M.; Nash, J. M.; Patton, C. E., A numerical study of nonlinear Schrödinger equation solutions for microwave solitons in magnetic thin films, J Appl Phys, 73, 3906-3909 (1993)
[9] Bao, W.; Shen, J., A fourth-order time-splitting Lagurre-Hermite pseudo-spectral method for Bose-Einstein condensates, SIAM Sci Comput, 26, 2010-2028 (2005) · Zbl 1084.35083
[10] Bao, W.; Jaksch, D.; Markowich, P. A., Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation, J Comput Phys, 187, 318-342 (2003) · Zbl 1028.82501
[11] Cerimele, M. M.; Chiofalo, M. L.; Pistella, F.; Succi, S.; Tosi, M. P., Numerical solution of the Gross-Pitaevskii equation using an explicit finite difference scheme: an application to trapped bose-einstein condensates, Phys Rev E, 62, 1382-1389 (2000)
[12] Bang, O.; Christiansen, P. L.; Rasmussen, K.; Gaididei, Y. B., The role of nonlinearity in modeling energy transfer in scheibe aggregates, Nonlinear excitations in biomolecules, 317-336 (1995), Springer, Berlin
[13] Stenflo, L.; Yu, M. Y., Nonlinear wave modulation in a cylindrical plasma, IEEE Trans Plasma Sci, 25, 1155-1157 (1997)
[14] Zhang, J. F.; Dai, C. Q.; Yang, Q.; Zhu, J. M., Variable coefficient f-expansion method and its application to nonlinear Schrödinger equation, Opt Commun, 252, 408-421 (2005)
[15] Lü, X.; Zhu, H. W.; Meng, X. H.; Yang, Z. C.; Tian, B., Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications, J Math Anal Appl, 336, 1305-1315 (2007) · Zbl 1128.35385
[16] Hohage, T.; Schmidt, F., On the numerical solution of nonlinear Schrödinger type equations in fiber optics, ZIB-Report 02-04 (2002), Konrad-Zuse-Zentrum für Informations Technic Berlin
[17] Zhang, J. L.; Li, B. A.; Wang, M. L., The exact solutions and the relevant constraint conditions for two nonlinear Schrödinger equations with variable coefficients, Chaos Solitons Fractals, 39, 858-865 (2009) · Zbl 1197.35278
[18] Chang, Q.; Jia, E.; Sun, W., Difference schemes for solving the generalized nonlinear Schrödinger equation, J Comput Phys, 148, 397-415 (1999) · Zbl 0923.65059
[19] Tian, Z.; Yu, P., High-order compact ADI (HOC-ADI) method for solving unsteady 2d Schrödinger equation, Comput Phys Comm, 181, 861-868 (2010) · Zbl 1205.65240
[20] Kalita, J. C.; Chhabra, P.; Kumar, S., A semi-discrete higher order compact scheme for the unsteady two-dimensional Schrödinger equation, J Comput Appl Math, 197, 141-149 (2006) · Zbl 1101.65096
[21] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math Comput Simul, 71, 16-30 (2006) · Zbl 1089.65085
[22] Dehghan, M.; Mirzaei, D., Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method, Int J Numer Methods Eng, 76, 510-520 (2008) · Zbl 1195.81007
[23] Dehghan, M.; Shokri, A., A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions, Comput Math Appl, 54, 1, 136-146 (2007) · Zbl 1126.65092
[24] Dehghan, M.; Emami-Naeini, F., The sinc-collocation and Sinc-Galerkin methods for solving the two-dimensional Schrödinger equation with nonhomogeneous boundary conditions, Appl Math Model, 37, 9379-9397 (2013) · Zbl 1427.65284
[25] Mohebbi, A.; Dehghan, M., The use of compact boundary value method for the solution of two-dimensional Schrödinger equation, J Comput Appl Math, 225, 124-134 (2009) · Zbl 1159.65081
[26] Subasi, M., On the finite-difference schemes for the numerical solution of two dimensional Schrödinger equation, Numer Methods Partial Differ Equ, 18, 752-758 (2002) · Zbl 1014.65077
[27] Antoine, X.; Besse, C.; Mouysett, V., Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions, Math Comput, 73, 1779-1799 (2004) · Zbl 1053.65072
[28] Gao, Z.; Xie, S., Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equation, Appl Numer Math, 61, 593-614 (2011) · Zbl 1221.65220
[29] Bratsos, A. G., A linearized finite difference scheme for the numerical solution of the nonlinear cubic Schrödinger equation, Korean J Comput Appl Math, 8, 459-467 (2001) · Zbl 1015.65042
[30] Dehghan, M.; Taleei, A., A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients, Comput Phys Comm, 181, 43-51 (2010) · Zbl 1206.65207
[31] Taleei, A.; Dehghan, M., Time-splitting pseudo-spectral domain decomposition method for the soliton solutions of the one- and multi-dimensional nonlinear schrödinger equations, Comput Phys Comm, 185, 1515-1528 (2014) · Zbl 1348.35246
[32] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Numerical solution of system of \(n\)-coupled nonlinear Schrödinger equations via two variants of the meshless local petrov-galerkin (MLPG) method, CMES Comput Model Eng Sci, 100, 399-444 (2014) · Zbl 1357.65187
[33] Li, X.; Zhang, L.; Wang, S., A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator, Appl Math Comput, 219, 3187-3197 (2012) · Zbl 1309.65099
[34] Wang, S.; Zhang, L., Split-step orthogonal spline collocation methods for nonlinear Schrödinger equations in one, two, and three dimensions, Appl Math Comput, 218, 5, 1903-1916 (2011) · Zbl 1231.65183
[35] Wang, T.; Guo, B.; Xu, Q., Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J Comput Phys, 243, 382-399 (2013) · Zbl 1349.65347
[36] Xu, Y.; Zhang, L., Alternating direction implicit method for solving two-dimensional cubic nonlinear Schrödinger equation, Comput Phys Comm, 183, 1082-1093 (2012) · Zbl 1277.65073
[37] Liu, X.; Ding, P., Dynamic properties of cubic nonlinear Schrödinger equation with varying nonlinear parameter, J Phys A, 37, 1589-1602 (2004) · Zbl 1046.81023
[38] Li, L.; Sun, H.; Tam, S., A spatial sixth-order alternating direction implicit method for two-dimensional cubic nonlinear Schrödinger equations, Comput Phys Comm, 187, 38-48 (2015) · Zbl 1348.35238
[39] Hong, J.; Liu, Y.; Muthe-Kaas, H.; Zanna, A., Globally conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients, Appl Numer Math, 56, 814-843 (2006) · Zbl 1110.65116
[40] Dag, I., A quadratic b-spline finite element method for solving nonlinear Schrödinger equation, Comput Methods Appl Mech Eng, 174, 247-258 (1999) · Zbl 0940.65106
[41] Pathria, D.; Morris, J. L., Pseudo-spectral solution of nonlinear Schrödinger equations, J Comput Phys, 87, 108-125 (1990) · Zbl 0691.65090
[42] Dehghan, M.; Mirzaei, D., The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation, Eng Anal Boundary Elem, 32, 9, 747-756 (2008) · Zbl 1244.65139
[43] Korkmaz, A.; Dağ, I., A differential quadrature algorithm for simulations of nonlinear Schrödinger equation, Comput Math Appl, 56, 2222-2234 (2008) · Zbl 1165.65393
[44] Dehghan, M.; Taleei, A., Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method, Numer Methods Partial Differ Equ, 26, 979-992 (2010) · Zbl 1195.65137
[45] El-Danaf, T. S.; Ramadan, M. A.; Alaal, F. E.I. A., Numerical studies of the cubic non-linear Schrödinger equation, Nonlinear Dyn, 67, 619-627 (2012) · Zbl 1246.65186
[46] Lin, B., Parametric cubic spline method for the solution of the nonlinear Schrödinger equation, Comput Phys Comm, 184, 60-65 (2013) · Zbl 1296.35172
[47] Lin, B., Septic spline function method for nonlinear Schrödinger equations, Appl Anal, 94, 2, 279-293 (2015) · Zbl 1309.65115
[48] Mohammadi, R., An exponential spline solution of nonlinear Schrödinger equations with constant and variable coefficients, Comput Phys Comm, 185, 917-932 (2014) · Zbl 1360.35251
[49] Golbabai, A.; Nikpour, A., Computing a numerical solution of two dimensional non-linear Schrödinger equation on complexly shaped domains by RBF based differential quadrature method, J Comput Phys, 322, 586-602 (2016) · Zbl 1352.65412
[50] Zhang, S.; Chen, S., A meshless symplectic method for two-dimensional Schrödinger equation with radial basis functions, Comput Math Appl, 72, 2143-2150 (2016) · Zbl 1368.65204
[51] Zhang, R.; Zhu, J.; Yu, X.; Li, M.; Loula, A. F.D., A conservative spectral collocation method for the nonlinear Schrödinger equation in two dimensions, Appl Math Comput, 310, 194-203 (2017) · Zbl 1427.65314
[52] Shindin, S.; Parumasur, N.; Govinder, S., Analysis of a chebyshev-type pseudo-spectral scheme for the nonlinear Schrödinger equation, Appl Math Comput, 307, 271-289 (2017) · Zbl 1411.65138
[53] Bashan, A.; Yagmurlu, N. M.; Ucar, Y.; Esen, A., An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic b-spline differential quadrature method, Chaos Solitons Fractals, 100, 45-56 (2017) · Zbl 1422.65294
[54] Dehghan, M.; Mohammadi, V., A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge-kutta method, Comput Phys Comm, 217, 23-34 (2017) · Zbl 1411.65108
[55] Zhang, L. W.; Liew, K. M., An element-free based solution for nonlinear Schrödinger equations using the ICVMLS-ritz method, Appl Math Comput, 249, 333-345 (2014) · Zbl 1339.65183
[56] Guo, P. F.; Zhang, L. W.; Liew, K. M., Numerical analysis of generalized regularized long wave equation using the element-free kp-ritz method, Appl Math Comput, 240, 91-101 (2014) · Zbl 1334.65155
[57] Zhang, L. W.; Huang, D.; Liew, K. M., An element-free IMLS-ritz method for numerical solution of three-dimensional wave equations, Comput Methods Appl Mech Eng, 297, 116-139 (2015) · Zbl 1425.65122
[58] Larry, L. S., Spline functions, basic theory (1981), John Wiley and Sons, Inc. · Zbl 0449.41004
[59] Behforooz, G. H.; Papamichael, N., End conditions for interpolator quintic splines, IMA J Numer Anal, 1, 81-93 (1981) · Zbl 0454.41008
[60] Henrici, P., Discrete variable methods in ordinary differential equations (1961), Wiley, New York · Zbl 0112.34901
[61] Usmani, R. A.; Warsi, S. A., Quintic spline solutions of boundary value problems, Comput Math Appl, 6, 197-203 (1980) · Zbl 0441.65060
[62] Mohammadi, R., Quintic b-spline collocation approach for solving generalized black-scholes equation governing option pricing, Comput Math Appl, 69, 777-797 (2015) · Zbl 1443.65249
[63] Bini, D. A.; Iannazzo, B.; Meini, B., Numerical solution of algebraic Riccati equations (2012), SIAM Publications: SIAM Publications Philadelphia · Zbl 1244.65058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.