×

Integrability of conformal blocks. I: Calogero-Sutherland scattering theory. (English) Zbl 1395.81227

Summary: Conformal blocks are the central ingredient of the conformal bootstrap programme. We elaborate on our recent observation that uncovered a relation with wave functions of an integrable Calogero-Sutherland Hamiltonian in order to develop a systematic theory of conformal blocks. Our main goal here is to review central ingredients of the Heckman-Opdam theory for scattering states of Calogero-Sutherland models with special emphasis to the relation with scalar 4-point blocks. We will also discuss a number of direct consequences for conformal blocks, including a new series expansion for blocks of arbitrary complex spin and a complete analysis of their poles and residues. Applications to the Froissart-Gribov formula for conformal field theory, as well as extensions to spinning blocks and defects are briefly discussed before we conclude with an outlook on forthcoming work concerning algebraic consequences of integrability.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R12 Groups and algebras in quantum theory and relations with integrable systems

Software:

SDPB; DLMF
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Mack, G.; Salam, A., Finite component field representations of the conformal group, Annals Phys., 53, 174, (1969) · doi:10.1016/0003-4916(69)90278-4
[2] A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett.12 (1970) 381 [Pisma Zh. Eksp. Teor. Fiz.12 (1970) 538] [INSPIRE]. · Zbl 1002.70558
[3] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys.B 49 (1972) 77 [Erratum ibid.B 53 (1973) 643] [INSPIRE]. · Zbl 1391.81166
[4] Ferrara, S.; Grillo, AF; Gatto, R., Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys., 76, 161, (1973) · doi:10.1016/0003-4916(73)90446-6
[5] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz.66 (1974) 23 [Sov. Phys. JETP39 (1974) 9] [INSPIRE].
[6] Mack, G., Duality in quantum field theory, Nucl. Phys., B 118, 445, (1977) · doi:10.1016/0550-3213(77)90238-3
[7] Dobrev, VK; Mack, G.; Petkova, VB; Petrova, SG; Todorov, IT, Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, Lect. Notes Phys., 63, 1, (1977) · Zbl 0407.43010 · doi:10.1007/BFb0009679
[8] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys., B 241, 333, (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[9] Rattazzi, R.; Rychkov, VS; Tonni, E.; Vichi, A., Bounding scalar operator dimensions in 4D CFT, JHEP, 12, 031, (2008) · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[10] El-Showk, S.; Paulos, MF; Poland, D.; Rychkov, S.; Simmons-Duffin, D.; Vichi, A., Solving the 3d Ising model with the conformal bootstrap, Phys. Rev., D 86, (2012) · Zbl 1310.82013
[11] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys.157 (2014) 869 [arXiv:1403.4545] [INSPIRE]. · Zbl 1310.82013
[12] Kos, F.; Poland, D.; Simmons-Duffin, D., Bootstrapping mixed correlators in the 3d Ising model, JHEP, 11, 109, (2014) · doi:10.1007/JHEP11(2014)109
[13] Simmons-Duffin, D., A semidefinite program solver for the conformal bootstrap, JHEP, 06, 174, (2015) · doi:10.1007/JHEP06(2015)174
[14] Kos, F.; Poland, D.; Simmons-Duffin, D.; Vichi, A., Precision islands in the Ising and O(N) models, JHEP, 08, 036, (2016) · Zbl 1390.81227 · doi:10.1007/JHEP08(2016)036
[15] Dymarsky, A.; Kos, F.; Kravchuk, P.; Poland, D.; Simmons-Duffin, D., The 3d stress-tensor bootstrap, JHEP, 02, 164, (2018) · Zbl 1387.81313 · doi:10.1007/JHEP02(2018)164
[16] Kos, F.; Poland, D.; Simmons-Duffin, D., Bootstrapping the O(N) vector models, JHEP, 06, 091, (2014) · Zbl 1392.81202 · doi:10.1007/JHEP06(2014)091
[17] Kos, F.; Poland, D.; Simmons-Duffin, D.; Vichi, A., Bootstrapping the O(N) archipelago, JHEP, 11, 106, (2015) · Zbl 1388.81054 · doi:10.1007/JHEP11(2015)106
[18] Iliesiu, L.; Kos, F.; Poland, D.; Pufu, SS; Simmons-Duffin, D.; Yacoby, R., Bootstrapping 3d fermions, JHEP, 03, 120, (2016) · doi:10.1007/JHEP03(2016)120
[19] Iliesiu, L.; Kos, F.; Poland, D.; Pufu, SS; Simmons-Duffin, D., Bootstrapping 3d fermions with global symmetries, JHEP, 01, 036, (2018) · doi:10.1007/JHEP01(2018)036
[20] Rattazzi, R.; Rychkov, S.; Vichi, A., Bounds in 4d conformal field theories with global symmetry, J. Phys., A 44, (2011) · Zbl 1206.81116
[21] Poland, D.; Simmons-Duffin, D.; Vichi, A., Carving out the space of 4d cfts, JHEP, 05, 110, (2012) · doi:10.1007/JHEP05(2012)110
[22] Chester, SM; Pufu, SS, Towards bootstrapping QED_{3}, JHEP, 08, 019, (2016) · Zbl 1390.81498 · doi:10.1007/JHEP08(2016)019
[23] Chester, SM; Pufu, SS, Anomalous dimensions of scalar operators in QED_{3}, JHEP, 08, 069, (2016) · Zbl 1390.81279 · doi:10.1007/JHEP08(2016)069
[24] Dolan, FA; Osborn, H., Conformal four point functions and the operator product expansion, Nucl. Phys., B 599, 459, (2001) · Zbl 1097.81734 · doi:10.1016/S0550-3213(01)00013-X
[25] Dolan, FA; Osborn, H., Conformal partial waves and the operator product expansion, Nucl. Phys., B 678, 491, (2004) · Zbl 1097.81735 · doi:10.1016/j.nuclphysb.2003.11.016
[26] F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE]. · Zbl 1388.83223
[27] Costa, MS; Penedones, J.; Poland, D.; Rychkov, S., Spinning conformal correlators, JHEP, 11, 071, (2011) · Zbl 1306.81207 · doi:10.1007/JHEP11(2011)071
[28] Costa, MS; Penedones, J.; Poland, D.; Rychkov, S., Spinning conformal blocks, JHEP, 11, 154, (2011) · Zbl 1306.81148 · doi:10.1007/JHEP11(2011)154
[29] Simmons-Duffin, D., Projectors, shadows and conformal blocks, JHEP, 04, 146, (2014) · Zbl 1333.83125 · doi:10.1007/JHEP04(2014)146
[30] Rejon-Barrera, F.; Robbins, D., Scalar-vector bootstrap, JHEP, 01, 139, (2016) · Zbl 1388.81693 · doi:10.1007/JHEP01(2016)139
[31] Costa, MS; Hansen, T., Conformal correlators of mixed-symmetry tensors, JHEP, 02, 151, (2015) · Zbl 1388.53102 · doi:10.1007/JHEP02(2015)151
[32] Penedones, J.; Trevisani, E.; Yamazaki, M., Recursion relations for conformal blocks, JHEP, 09, 070, (2016) · Zbl 1390.81533 · doi:10.1007/JHEP09(2016)070
[33] Castedo Echeverri, A.; Elkhidir, E.; Karateev, D.; Serone, M., Deconstructing conformal blocks in 4d CFT, JHEP, 08, 101, (2015) · Zbl 1388.81409 · doi:10.1007/JHEP08(2015)101
[34] Iliesiu, L.; Kos, F.; Poland, D.; Pufu, SS; Simmons-Duffin, D.; Yacoby, R., Fermion-scalar conformal blocks, JHEP, 04, 074, (2016) · Zbl 1388.81051
[35] Costa, MS; Hansen, T.; Penedones, J.; Trevisani, E., Radial expansion for spinning conformal blocks, JHEP, 07, 057, (2016) · Zbl 1390.81501 · doi:10.1007/JHEP07(2016)057
[36] Costa, MS; Hansen, T.; Penedones, J.; Trevisani, E., Projectors and seed conformal blocks for traceless mixed-symmetry tensors, JHEP, 07, 018, (2016) · Zbl 1388.81798 · doi:10.1007/JHEP07(2016)018
[37] Castedo Echeverri, A.; Elkhidir, E.; Karateev, D.; Serone, M., Seed conformal blocks in 4D CFT, JHEP, 02, 183, (2016) · Zbl 1388.81745 · doi:10.1007/JHEP02(2016)183
[38] Karateev, D.; Kravchuk, P.; Simmons-Duffin, D., Weight shifting operators and conformal blocks, JHEP, 02, 081, (2018) · Zbl 1387.81323 · doi:10.1007/JHEP02(2018)081
[39] Kravchuk, P.; Simmons-Duffin, D., Counting conformal correlators, JHEP, 02, 096, (2018) · Zbl 1387.81325 · doi:10.1007/JHEP02(2018)096
[40] Kravchuk, P., Casimir recursion relations for general conformal blocks, JHEP, 02, 011, (2018) · Zbl 1387.81324 · doi:10.1007/JHEP02(2018)011
[41] Calogero, F., Solution of the one-dimensional N body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys., 12, 419, (1971) · Zbl 1002.70558 · doi:10.1063/1.1665604
[42] B. Sutherland, Exact results for a quantum many body problem in one-dimension. 2, Phys. Rev.A 5 (1972) 1372 [INSPIRE].
[43] Moser, J., Three integrable Hamiltonian systems connnected with isospectral deformations, Adv. Math., 16, 197, (1975) · Zbl 0303.34019 · doi:10.1016/0001-8708(75)90151-6
[44] G.J. Heckman, Root systems and hypergeometric functions. I, Compos. Math.64 (1987) 329. · Zbl 1147.33004
[45] G.J. Heckman, Root systems and hypergeometric functions. II, Compos. Math.64 (1987) 353. · Zbl 0656.17007
[46] E.M. Opdam, Root systems and hypergeometric functions. III, Compos. Math.67 (1988) 21. · Zbl 0669.33007
[47] E.M. Opdam, Root systems and hypergeometric functions. IV, Compos. Math.67 (1988) 191. · Zbl 0669.33008
[48] Koornwinder, T., Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators, I, Indag. Math., 77, 48, (1974) · Zbl 0263.33011 · doi:10.1016/1385-7258(74)90013-4
[49] Koornwinder, T., Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators, II, Indag. Math., 77, 59, (1974) · Zbl 0263.33011 · doi:10.1016/1385-7258(74)90014-6
[50] Koornwinder, T., Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators, III, Indag. Math., 77, 357, (1974) · Zbl 0291.33013 · doi:10.1016/1385-7258(74)90026-2
[51] Koornwinder, T., Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators, IV, Indag. Math., 77, 370, (1974) · Zbl 0291.33013 · doi:10.1016/1385-7258(74)90027-4
[52] I. Cherednik, Double affine Hecke algebras, Cambridge University Press, Cambridge, U.K., (2005). · Zbl 1087.20003 · doi:10.1017/CBO9780511546501
[53] I. Macdonald, Affine Hecke algebras and orthogonal polynomials, Cambridge tracts in mathematics, Cambridge University Press, Cambridge, U.K., (2003).
[54] Isachenkov, M.; Schomerus, V., Superintegrability of d-dimensional conformal blocks, Phys. Rev. Lett., 117, (2016) · doi:10.1103/PhysRevLett.117.071602
[55] M. Isachenkov and V. Schomerus, Integrability of conformal blocks II: algebraic structures, in preparation. · Zbl 1377.81182
[56] Caron-Huot, S., Analyticity in spin in conformal theories, JHEP, 09, 078, (2017) · Zbl 1382.81173 · doi:10.1007/JHEP09(2017)078
[57] Fitzpatrick, AL; Kaplan, J.; Poland, D.; Simmons-Duffin, D., The analytic bootstrap and AdS superhorizon locality, JHEP, 12, 004, (2013) · Zbl 1342.83239 · doi:10.1007/JHEP12(2013)004
[58] Komargodski, Z.; Zhiboedov, A., Convexity and liberation at large spin, JHEP, 11, 140, (2013) · doi:10.1007/JHEP11(2013)140
[59] Alday, LF; Bissi, A.; Lukowski, T., Large spin systematics in CFT, JHEP, 11, 101, (2015) · Zbl 1388.81752
[60] Alday, LF; Zhiboedov, A., An algebraic approach to the analytic bootstrap, JHEP, 04, 157, (2017) · Zbl 1378.81097 · doi:10.1007/JHEP04(2017)157
[61] Alday, LF, Solving CFTs with weakly broken higher spin symmetry, JHEP, 10, 161, (2017) · Zbl 1383.81149 · doi:10.1007/JHEP10(2017)161
[62] Alday, LF, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett., 119, 111601, (2017) · doi:10.1103/PhysRevLett.119.111601
[63] Simmons-Duffin, D., The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP, 03, 086, (2017) · Zbl 1377.81184 · doi:10.1007/JHEP03(2017)086
[64] M. Hogervorst, Crossing kernels for boundary and crosscap CFTs, arXiv:1703.08159 [INSPIRE].
[65] Hogervorst, M.; Rees, BC, Crossing symmetry in alpha space, JHEP, 11, 193, (2017) · Zbl 1383.81231 · doi:10.1007/JHEP11(2017)193
[66] L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, arXiv:1711.02031 [INSPIRE].
[67] Simmons-Duffin, D.; Stanford, D.; Witten, E., A spacetime derivation of the Lorentzian OPE inversion formula, JHEP, 07, 085, (2018) · Zbl 1395.81246 · doi:10.1007/JHEP07(2018)085
[68] Li, D.; Meltzer, D.; Poland, D., Conformal bootstrap in the Regge limit, JHEP, 12, 013, (2017) · Zbl 1383.81242 · doi:10.1007/JHEP12(2017)013
[69] Costa, MS; Hansen, T.; Penedones, J., Bounds for OPE coefficients on the Regge trajectory, JHEP, 10, 197, (2017) · Zbl 1383.81197 · doi:10.1007/JHEP10(2017)197
[70] Qiao, J.; Rychkov, S., A Tauberian theorem for the conformal bootstrap, JHEP, 12, 119, (2017) · Zbl 1383.81253 · doi:10.1007/JHEP12(2017)119
[71] M. Lemos, P. Liendo, M. Meineri and S. Sarkar, Universality at large transverse spin in defect CFT, arXiv:1712.08185 [INSPIRE].
[72] V. Schomerus, Harmony of defect blocks, talk given at the workshop Boundary and defect conformal field theory: open problems and applications, Chicheley Hall, Buckinghamshire, U.K., September 2017.
[73] A. Gadde, Conformal constraints on defects, arXiv:1602.06354 [INSPIRE].
[74] Fukuda, M.; Kobayashi, N.; Nishioka, T., Operator product expansion for conformal defects, JHEP, 01, 013, (2018) · Zbl 1384.81100 · doi:10.1007/JHEP01(2018)013
[75] G. Pöschl and E. Teller, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators (in German), Z. Phys.83 (1933) 143 [INSPIRE]. · Zbl 0007.13603
[76] G. Heckman and H. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, Academic Press, U.S.A., (1994). · Zbl 0836.43001
[77] V.I. Danilov, The geometry of toric varieties, Usp. Mat. Nauk33 (1978) 85 [Russ. Math. Surv.33 (1978) 97]. · Zbl 0425.14013
[78] T. Oda, Convex bodies and algebraic geometry, Springer-Verlag, Germany, (1988). · Zbl 0628.52002
[79] G.E. Andrews, R. Askey and R. Roy, Special functions, Cambridge University Press, Cambridge, U.K., (1999). · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[80] T. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, in Special functions: group theoretical aspects and applications, Springer, Netherlands, (1984), pg. 1. · Zbl 0584.43010
[81] Hogervorst, M.; Rychkov, S., Radial coordinates for conformal blocks, Phys. Rev., D 87, 106004, (2013)
[82] W. Bailey, Generalized hypergeometric series, Cambridge tracts in mathematics and mathematical physics, Cambridge University Press, Cambridge, U.K., (1935).
[83] Shimeno, N., Formula for the hypergeometric functions of type BC_{n}, Pacific J. Math., 236, 105, (2008) · Zbl 1232.33023 · doi:10.2140/pjm.2008.236.105
[84] E.M. Opdam, Part I: lectures on Dunkl operators, MSJ Mem.8 (2000) 2, Mathematical Society of Japan, Tokyo, Japan, (2000).
[85] Gindikin, SG; Karpelevich, FI, Plancherel measure for symmetric Riemannian spaces of non-positive curvature, Sov. Math. Dokl., 3, 962, (1962) · Zbl 0168.27503
[86] Pasquale, A., Asymptotic analysis of θ-hypergeometric functions, Invent. Math., 157, 71, (2004) · Zbl 1052.33013 · doi:10.1007/s00222-003-0349-9
[87] Opdam, EM, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math., 175, 75, (1995) · Zbl 0836.43017 · doi:10.1007/BF02392487
[88] Dũng, NV, The fundamental groups of the spaces of regular orbits of the affine Weyl groups, Topology, 22, 425, (1983) · Zbl 0524.57015 · doi:10.1016/0040-9383(83)90035-6
[89] Brieskorn, E., Die fundamentalgruppe des raumes der regulären orbits einer endlichen komplexen spiegelungsgruppe, Invent. Math., 12, 57, (1971) · Zbl 0204.56502 · doi:10.1007/BF01389827
[90] H. van der Lek, The homotopy type of complex hyperplane complements, Ph.D. thesis, Radboud Universiteit, Nijmegen, Netherlands, (1983).
[91] Lek, H., Extended Artin groups, Proc. Symp. Pure Math., 40, 117, (1981)
[92] P. Deligne, Les immeubles des groupes de tresses généralisés (in French), Invent. Math.17 (1972) 273. · Zbl 0238.20034
[93] Opdam, EM, An analogue of the Gauss summation formula for hypergeometric functions related to root systems, Math. Z., 212, 313, (1993) · Zbl 0789.33009 · doi:10.1007/BF02571661
[94] Costa, MS; Goncalves, V.; Penedones, J., Conformal Regge theory, JHEP, 12, 091, (2012) · Zbl 1397.81297 · doi:10.1007/JHEP12(2012)091
[95] Liendo, P.; Rastelli, L.; Rees, BC, The bootstrap program for boundary CFT_{d}, JHEP, 07, 113, (2013) · Zbl 1342.81504 · doi:10.1007/JHEP07(2013)113
[96] F. Hartogs, Einige Folgerungen aus der Cauchyschen Integralformel bei Funktionen mehrerer Veränderlichen (in German), Sitz. Königl. Bayer. Akad. Wiss. München36 (1906) 223. · JFM 37.0443.01
[97] W. Osgood, Topics in the theory of functions of several complex variables, Dover Publications, New York, U.S.A., (1966). · Zbl 0138.30901
[98] P. Deligne, ‘Catégories tannakiennesin the Grothendieck Festschrift: a collection of articles written in honor of the 60\^{}{th}birthday of A. Grothendieck, Birkhäuser, Boston, U.S.A., (1990), pg. 111. · Zbl 0291.33013
[99] B. Berndt, Ramanujans notebooks, part I, Springer-Verlag, New York, U.S.A., (1985). · Zbl 0555.10001 · doi:10.1007/978-1-4612-1088-7
[100] Amdeberhan, T.; Espinosa, O.; Gonzalez, I.; Harrison, M.; Moll, VH; Straub, A., Ramanujan’s master theorem, Ramanujan J., 29, 103, (2012) · Zbl 1258.33001 · doi:10.1007/s11139-011-9333-y
[101] Ólafsson, G.; Pasquale, A., Ramanujan’s master theorem for the hypergeometric Fourier transform associated with root systems, J. Fourier Anal. Appl., 19, 1150, (2013) · Zbl 1314.43002 · doi:10.1007/s00041-013-9290-5
[102] Cherednik, I., Inverse harish-chandra transform and difference operators, Int. Math. Res. Notices, 1997, 733, (1997) · Zbl 0882.22016 · doi:10.1155/S1073792897000482
[103] Schapira, B., Contributions to the hypergeometric function theory of heckman and opdam: sharp estimates, Schwartz space, heat kernel, Geom. Funct. Anal., 18, 222, (2008) · Zbl 1147.33004 · doi:10.1007/s00039-008-0658-7
[104] J. Korevaar, Tauberian theorems, Springer-Verlag, Berlin Heidelberg, Germany, (2004). · Zbl 0068.27204 · doi:10.1007/978-3-662-10225-1
[105] Pappadopulo, D.; Rychkov, S.; Espin, J.; Rattazzi, R., OPE convergence in conformal field theory, Phys. Rev., D 86, 105043, (2012)
[106] Fitzpatrick, AL; Kaplan, J.; Walters, MT, Universality of long-distance AdS physics from the CFT bootstrap, JHEP, 08, 145, (2014) · doi:10.1007/JHEP08(2014)145
[107] Jianming, L.; Weixing, Z., A Wiener-Tauberian theorem for Fourier-Jacobi transform, Approx. Theor. Appl., 13, 97, (1997) · Zbl 0919.43001
[108] E.K. Narayanan and A. Sitaram, Analogues of the Wiener-Tauberian and Schwartz theorems for radial functions on symmetric spaces, arXiv:0905.3018. · Zbl 1210.43002
[109] S. Bochner, Vorlesungen über Fouriersche Integrale (in German), Akademische Verlagsgesellschaft, Leipzig, Germany, (1932). · Zbl 1387.81324
[110] C. Berg, J.P.R. Christensen and P. Ressel, Harmonic analysis on semigroups, Springer-Verlag, New York, U.S.A., (1984). · Zbl 0619.43001 · doi:10.1007/978-1-4612-1128-0
[111] Flensted-Jensen, M.; Koornwinder, T., The convolution structure for Jacobi function expansions, Arkiv Matem., 11, 245, (1973) · Zbl 0267.42009 · doi:10.1007/BF02388521
[112] Flensted-Jensen, M.; Koornwinder, TH, Jacobi functions: the addition formula and the positivity of the dual convolution structure, Arkiv Matem., 17, 139, (1979) · Zbl 0409.33009 · doi:10.1007/BF02385463
[113] Trimeche, K., The positivity of the transmutation operators associated to the Cherednik operators for the root system BC_{2}, Math. J. Okayama Univ., 58, 183, (2016) · Zbl 1333.33026
[114] Rösler, M., Positive convolution structure for a class of heckman-opdam hypergeometric functions of type BC, J. Funct. Anal., 258, 2779, (2010) · Zbl 1186.43010 · doi:10.1016/j.jfa.2009.12.007
[115] Ólafsson, G.; Pasquale, A., Paley-Wiener theorems for the θ-spherical transform: an overview, Acta Appl. Math., 81, 275, (2004) · Zbl 1064.43011 · doi:10.1023/B:ACAP.0000024203.22722.ec
[116] Kaviraj, A.; Sen, K.; Sinha, A., Analytic bootstrap at large spin, JHEP, 11, 083, (2015) · Zbl 1390.81703 · doi:10.1007/JHEP11(2015)083
[117] Alday, LF; Zhiboedov, A., Conformal bootstrap with slightly broken higher spin symmetry, JHEP, 06, 091, (2016) · Zbl 1388.81753 · doi:10.1007/JHEP06(2016)091
[118] Li, D.; Meltzer, D.; Poland, D., Non-abelian binding energies from the lightcone bootstrap, JHEP, 02, 149, (2016) · Zbl 1388.81946 · doi:10.1007/JHEP02(2016)149
[119] Kaviraj, A.; Sen, K.; Sinha, A., Universal anomalous dimensions at large spin and large twist, JHEP, 07, 026, (2015) · Zbl 1388.83275 · doi:10.1007/JHEP07(2015)026
[120] Mazac, D., Analytic bounds and emergence of ads_{2} physics from the conformal bootstrap, JHEP, 04, 146, (2017) · Zbl 1378.81121 · doi:10.1007/JHEP04(2017)146
[121] Dey, P.; Kaviraj, A.; Sen, K., More on analytic bootstrap for O(N) models, JHEP, 06, 136, (2016) · Zbl 1388.83223 · doi:10.1007/JHEP06(2016)136
[122] Jafferis, D.; Mukhametzhanov, B.; Zhiboedov, A., Conformal bootstrap at large charge, JHEP, 05, 043, (2018) · Zbl 1391.81166 · doi:10.1007/JHEP05(2018)043
[123] Billò, M.; Gonçalves, V.; Lauria, E.; Meineri, M., Defects in conformal field theory, JHEP, 04, 091, (2016) · Zbl 1388.81029
[124] Schomerus, V.; Sobko, E.; Isachenkov, M., Harmony of spinning conformal blocks, JHEP, 03, 085, (2017) · Zbl 1377.81182 · doi:10.1007/JHEP03(2017)085
[125] Schomerus, V.; Sobko, E., From spinning conformal blocks to matrix Calogero-Sutherland models, JHEP, 04, 052, (2018) · Zbl 1390.81541 · doi:10.1007/JHEP04(2018)052
[126] Reshetikhin, N., Degenerate integrability of quantum spin Calogero-Moser systems, Lett. Math. Phys., 107, 187, (2017) · Zbl 1367.81083 · doi:10.1007/s11005-016-0897-8
[127] Cornagliotto, M.; Lemos, M.; Schomerus, V., Long multiplet bootstrap, JHEP, 10, 119, (2017) · Zbl 1383.81287 · doi:10.1007/JHEP10(2017)119
[128] Cherednik, I., Quantum Knizhnik-Zamolodchikov equations and affine root systems, Commun. Math. Phys., 150, 109, (1992) · Zbl 0849.17025 · doi:10.1007/BF02096568
[129] Ruijsenaars, SNM; Schneider, H., A new class of integrable systems and its relation to solitons, Annals Phys., 170, 370, (1986) · Zbl 0608.35071 · doi:10.1016/0003-4916(86)90097-7
[130] Diejen, JF, Integrability of difference Calogero-Moser systems, J. Math. Phys., 35, 2983, (1994) · Zbl 0805.58027 · doi:10.1063/1.530498
[131] Diejen, JF, Deformations of Calogero-Moser systems and finite Toda chains, Theor. Math. Phys., 99, 549, (1994) · Zbl 0851.58021 · doi:10.1007/BF01016137
[132] Rains, E., BC_{n}-symmetric polynomials, Transform. Groups, 10, 63, (2005) · Zbl 1080.33018 · doi:10.1007/s00031-005-1003-y
[133] Okounkov, A., BC-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials, Transform. Groups, 3, 181, (1998) · Zbl 0941.17005 · doi:10.1007/BF01236432
[134] Meer, M.; Stokman, J., Double affine Hecke algebras and bispectral quantum Knizhnik-Zamolodchikov equations, Int. Math. Res. Notices, 2010, 969, (2010) · Zbl 1200.32012
[135] J.V. Stokman and T.H. Koornwinder, Limit transitions for BC type multivariable orthogonal polynomials, (2005). · Zbl 0881.33026
[136] T.H. Koornwinder, Okounkovs BC-type interpolation Macdonald polynomials and their q = 1 limit, arXiv:1408.5993. · Zbl 1331.33038
[137] J. Horn, Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen (in German), Math. Ann.34 (1889) 544.
[138] Srivastava, H.; Daoust, M., Certain generalized Neumann expansions associated with the kampé de Fériet function, Indag. Math., 175, 449, (1969) · Zbl 0185.29803
[139] F.W.J. Olver ed., NIST handbook of mathematical functions, Cambridge University Press, Cambridge, U.K., (2010). · Zbl 1198.00002
[140] Burchnall, JL; Chaundy, TW, Expansions of appell’s double hypergeometric functions, Quart. J. Math., 11, 249, (1940) · JFM 66.0326.01 · doi:10.1093/qmath/os-11.1.249
[141] Beerends, RJ, Some special values for the BC type hypergeometric function, Contemp. Math., 138, 27, (1992) · Zbl 0794.33008 · doi:10.1090/conm/138/1199119
[142] Exton, H., On the system of partial differential equations associated with appell’s function F_{4}, J. Phys., A 28, 631, (1995) · Zbl 0856.33012
[143] Fortin, J-F; Skiba, W., Conformal bootstrap in embedding space, Phys. Rev., D 93, 105047, (2016)
[144] J.-F. Fortin and W. Skiba, Conformal differential operator in embedding space and its applications, arXiv:1612.08672 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.