×

Estimating tail decay for stationary sequences via extreme values. (English) Zbl 1044.62053

Summary: We study estimation of the tail-decay parameter of the marginal distribution corresponding to a discrete-time real-valued stationary stochastic process. Assuming that the underlying process is short-range dependent, we investigate properties of estimators of the tail-decay parameter which are based on the maximal extreme value of the process observed over a sampled time interval. These estimators only assume that the tail of the marginal distribution is roughly exponential, plus some modest ‘mixing’ conditions.
Consistency properties of these estimators are established, as well as minimax convergence rates. We also provide some discussion on estimating the pre-exponent, when a more refined tail asymptotic is assumed. Properties of a certain moving-average variant of the extremal-based estimator are investigated as well. In passing, we also characterize the precise dependence (mixing) assumptions that support almost-sure limit theory for normalized extreme values and related first-passage times in stationary sequences.

MSC:

62G32 Statistics of extreme values; tail inference
62M09 Non-Markovian processes: estimation
60G70 Extreme value theory; extremal stochastic processes
90B20 Traffic problems in operations research
62G20 Asymptotic properties of nonparametric inference
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Asmussen, S. (1998). Extreme value theory for queues via cycle maxima. Extremes 1 , 137–168. · Zbl 0926.60072 · doi:10.1023/A:1009970005784
[2] Athreya, K. B. and Pantula, S. G. (1986). Mixing properties of Harris chains and autoregressive processes. J. Appl. Prob. 23 , 880–892. · Zbl 0623.60087 · doi:10.2307/3214462
[3] Beran, J., Sherman, R., Taqqu, M. and Willinger, W. (1995). Long-range dependence in variable-bit-rate video traffic. IEEE Trans. Commun. 43 , 1566–1579.
[4] Berger, A. W. and Whitt, W. (1995). Maximum values in queueing processes. Prob. Eng. Inf. Sci. 9 , 375–409. · Zbl 1335.60168
[5] Berman, S. M. (1964). Limit theorems for the maximum term in stationary sequences. Ann . Math. Statist. 35 , 502–516. · Zbl 0122.13503 · doi:10.1214/aoms/1177703551
[6] Bertsimas, D. and Paschalidis, I. (2001). Probabilistic service level guarantees in make-to-stock manufacturing systems. Operat . Res. 49 , 119–133. · Zbl 1163.90416 · doi:10.1287/opre.49.1.119.11183
[7] Bertsimas, D., Paschalidis, I. and Tsitsiklis, J. N. (1998). On the large deviations behaviour of acyclic networks of G/G/1 queues. Ann . Appl. Prob. 8 , 1027–1069. · Zbl 0973.90012 · doi:10.1214/aoap/1028903373
[8] Billingsley, P. (1986). Probability and Measure . John Wiley, New York. · Zbl 0649.60001
[9] Bradley, R. C. (1986). Basic properties of strong mixing conditions. In Dependence in Probability and Statistics (Progr. Prob. Statist. 11 ), Birkhäuser, Boston, MA, pp. 165–192. · Zbl 0603.60034
[10] Courcoubetis, C. \et (1995). Admission control and routing in ATM networks using inference from measured buffer occupancy. IEEE Trans. Commun. 43 , 1778–1784. · Zbl 0818.90055 · doi:10.1109/9.362879
[11] Devroye, L., Györfi, L. and Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition . Springer, New York. · Zbl 0853.68150
[12] Doukhan, P. (1994). Mixing. Properties and Examples . Springer, New York. · Zbl 0801.60027
[13] Drees, H. (2001). Minimax risk bounds in extreme value theory. Ann . Statist. 21 , 266–294. · Zbl 1029.62046 · doi:10.1214/aos/996986509
[14] Duffield, N. G. and O’Connell, N. (1995). Large deviations and overflow probabilities with general single-server queue, with applications. Math. Proc. Camb. Phil. Soc. 118 , 363–374. · Zbl 0840.60087 · doi:10.1017/S0305004100073709
[15] Embrechts, P., Klüppelberg, T. and Mikosch, C. (1997). Modelling Extremal Events . Springer, Berlin. · Zbl 0873.62116
[16] Galambos, J. (1978). The Asymptotic Theory of Extreme Order Statistics . John Wiley, New York. · Zbl 0381.62039
[17] Glasserman, P. and Kou, S. (1995). Limits of first passage times to rare sets in regenerative processes. Ann. Appl. Prob. 5 , 424–445. JSTOR: · Zbl 0830.60021 · doi:10.1214/aoap/1177004772
[18] Glynn, P. W. (1982). Simulation output analysis for general state space Markov chains. Doctoral Thesis, Stanford University. · Zbl 0642.65097
[19] Glynn, P. W. and Whitt, W. (1994). Logarithmic asymptotics for steady-state tail probabilities in a single-server queue. In Studies in Applied Probability (J. Appl. Prob. Spec. Vol. 31A ), eds J. Galambos and J. Gani, Applied Probability Trust, Sheffield, pp. 131–156. · Zbl 0805.60093
[20] Glynn, P. W. and Zeevi, A. J. (2000). Estimating tail probabilities in queues via extremal statistics. In Analysis of Communication Networks : Call Centres, Traffic and Performance (Fields Inst. Commun. 28 ), American Mathematical Society, Providence, RI, pp. 135–158. · Zbl 0980.60067
[21] Haiman, G. and Habach, L. (1999). Almost sure behaviour of extremes of \(m\)-dependent stationary sequences. C . R. Acad. Sci. Paris Sér. I Math. 329 , 887–892. · Zbl 0945.60048 · doi:10.1016/S0764-4442(00)87494-7
[22] Hall, P., Teugels, J. L. and Vanmarcke, A. (1992). The abscissa of convergence of the Laplace transform. J. Appl. Prob. 29 , 353–362. · Zbl 0755.60015 · doi:10.2307/3214572
[23] Hsu, I. and Walrand, J. (1996). Dynamic bandwidth allocation for ATM switches. J. Appl. Prob. 33 , 758–771. · Zbl 0860.90053 · doi:10.2307/3215357
[24] Iglehart, D. L. (1972). Extreme values in the GI/G/1 queue. Ann. Math. Statist. 43 , 627–635. · Zbl 0238.60072 · doi:10.1214/aoms/1177692642
[25] Kesten, H. and O’Brien, G. L. (1976). Examples of mixing sequences. Duke Math . J. 43 , 405–415. · Zbl 0337.60035 · doi:10.1215/S0012-7094-76-04336-2
[26] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes . Springer, New York. · Zbl 0518.60021
[27] Loynes, R. M. (1965). Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Statist. 36 , 993–999. · Zbl 0178.53201 · doi:10.1214/aoms/1177700071
[28] Mokkadem, A. (1988). Mixing properties of ARMA processes. Stoch. Process. Appl. 29 , 309–315. · Zbl 0647.60042 · doi:10.1016/0304-4149(88)90045-2
[29] Nobel, A. B. and Dembo, A. (1993). A note on uniform laws of averages for dependent processes. Statist. Prob. Lett. 17 , 169–172. · Zbl 0776.60042 · doi:10.1016/0167-7152(93)90163-D
[30] O’Brien, G. L. (1987). Extreme values for stationary and Markov sequences. Ann . Prob. 15 , 281–291. JSTOR: · Zbl 0619.60025 · doi:10.1214/aop/1176992270
[31] Paschalidis, I. and Vassilaras, S. (2001). On the estimation of buffer overflow probabilities from measurements. IEEE Trans . Inf. Theory 47 , 178–191. · Zbl 1020.94502 · doi:10.1109/18.904521
[32] Resnick, S. I. (1987). Extreme Values , Regular Variation, and Point Processes. Springer, New York. · Zbl 0633.60001
[33] Rootzén, H. (1988). Maxima and exceedances of stationary Markov chains. Adv . Appl. Prob. 20 , 371–390. · Zbl 0654.60023 · doi:10.2307/1427395
[34] Zeevi, A. and Glynn, P. W. (2000). On the maximum workload of a queue fed by fractional Brownian motion. Ann . Appl. Prob. 10 , 1084–1099. · Zbl 1073.60089 · doi:10.1214/aoap/1019487607
[35] Zeevi, A. and Glynn, P. W. (2001). Estimating tail decay for stationary sequences via extreme values. Tech. Rep., Graduate School of Business, Columbia University. · Zbl 1044.62053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.