×

Spatiotemporal patterns in a 2D lattice with linear repulsive and nonlinear attractive coupling. (English) Zbl 1460.94092

Summary: We explore the emergence of a variety of different spatiotemporal patterns in a 2D lattice of self-sustained oscillators, which interact nonlocally through an active nonlinear element. A basic element is a van der Pol oscillator in a regime of relaxation oscillations. The active nonlinear coupling can be implemented by a radiophysical element with negative resistance in its current-voltage curve taking into account nonlinear characteristics (for example, a tunnel diode). We show that such coupling consists of two parts, namely, a repulsive linear term and an attractive nonlinear term. This interaction leads to the emergence of only standing waves with periodic dynamics in time and absence of any propagating wave processes. At the same time, many different spatiotemporal patterns occur when the coupling parameters are varied, namely, regular and complex cluster structures, such as chimera states. This effect is associated with the appearance of new periodic states of individual oscillators by the repulsive part of coupling, while the attractive term attenuates this effect. We also show influence of the coupling nonlinearity on the spatiotemporal dynamics.
©2021 American Institute of Physics

MSC:

94C05 Analytic circuit theory
34C60 Qualitative investigation and simulation of ordinary differential equation models
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence (1984), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0558.76051
[2] Nekorkin, V. and Velarde, M., Synergetic Phenomena in Active Lattices, Springer Series in Synergetics (Springer, Berlin, 2002). · Zbl 1006.37002
[3] Osipov, G., Kurths, J., and Zhou, C., Synchronization in Oscillatory Networks, Springer Series in Synergetics (Springer, Berlin, 2007). · Zbl 1137.37018
[4] Barrat, A.; Barthelemy, M.; Vespignani, A., Dynamical Processes on Complex Networks (2008), Cambridge University Press · Zbl 1198.90005
[5] Boccaletti, S.; Pisarchik, A.; Genio, C.; Amann, A., Synchronization: From Coupled Systems to Complex Networks (2008), Cambridge University Press
[6] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. U., Phys. Rep., 424, 175-308 (2006) · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[7] Estrada, E., The Structure of Complex Networks: Theory and Applications (2012), Oxford University Press · Zbl 1267.05001
[8] Yamamoto, H.; Kubota, S.; Shimizu, F.; Hirano-Iwata, A.; Niwano, M., Front. Comput. Neurosci., 12, 17 (2018) · doi:10.3389/fncom.2018.00017
[9] Kaneko, K., Physica D, 34, 1-41 (1989) · Zbl 0702.58043 · doi:10.1016/0167-2789(89)90227-3
[10] Kaneko, K., Nonlinear Science: Theory and Applications (1993), John Wiley & Sons: John Wiley & Sons, New York · Zbl 0777.00014
[11] Afraimovich, V.; Chow, S. N.; Hale, J., Physica D, 103, 442-451 (1997) · Zbl 1194.34056 · doi:10.1016/S0167-2789(96)00276-X
[12] Xie, F.; Hu, G., Phys. Rev. E, 55, 79 (1997) · doi:10.1103/PhysRevE.55.79
[13] Neu, J. C.; Preissig, R. S. Jr.; Krassowska, W., Physica D, 102, 285-299 (1997) · Zbl 0884.35061 · doi:10.1016/S0167-2789(96)00203-5
[14] Shepelev, I.; Shamshin, D.; Strelkova, G.; Vadivasova, T., Chaos, Solitons Fractals, 104, 153-160 (2017) · Zbl 1380.92012 · doi:10.1016/j.chaos.2017.08.009
[15] Mikhailov, A.; Loskutov, A., Foundations of Synergetics II: Complex Patterns (2012), Springer Science & Business Media
[16] Pertsov, A.; Ermakova, E.; Panfilov, A., Physica D, 14, 117-124 (1984) · Zbl 0587.35080 · doi:10.1016/0167-2789(84)90008-3
[17] Hu, G.; Xiao, J.; Chua, L. O.; Pivka, L., Phys. Rev. Lett., 80, 1884 (1998) · doi:10.1103/PhysRevLett.80.1884
[18] Zhang, H.; Hu, B.; Hu, G., Phys. Rev. E, 68, 026134 (2003) · doi:10.1103/PhysRevE.68.026134
[19] Hagan, P. S., Adv. Appl. Math., 2, 400-416 (1981) · Zbl 0485.35006 · doi:10.1016/0196-8858(81)90042-7
[20] Luo, H.; Ma, J., Int. J. Mod. Phys. B, 34, 2050137 (2020) · Zbl 1439.92015 · doi:10.1142/S0217979220501374
[21] Kuramoto, Y.; Battogtokh, D., Nonlinear Phenom. Complex Syst., 5, 380-385 (2002)
[22] Abrams, D.; Strogatz, S., Phys. Rev. Lett., 93, 174102 (2004) · doi:10.1103/PhysRevLett.93.174102
[23] Omelchenko, I.; Maistrenko, Y.; Hövel, P.; Schöll, E., Phys. Rev. Lett., 106, 234102 (2011) · doi:10.1103/PhysRevLett.106.234102
[24] Hagerstrom, A.; Murphy, T.; Roy, R.; Hövel, P.; Omelchenko, I.; Schöll, E., Nat. Phys., 8, 658-661 (2012) · doi:10.1038/nphys2372
[25] Martens, E.; Thutupalli, S.; Fourrière, A.; Hallatschek, O., Proc. Natl. Acad. Sci. U.S.A., 110, 10563-10567 (2013) · doi:10.1073/pnas.1302880110
[26] Zakharova, A.; Kapeller, M.; Schöll, E., Phys. Rev. Lett., 112, 154101 (2014) · doi:10.1103/PhysRevLett.112.154101
[27] Shepelev, I.; Vadivasova, T., Commun. Nonlinear Sci. Numer. Simul., 79, 104925 (2019) · Zbl 1508.92039 · doi:10.1016/j.cnsns.2019.104925
[28] Zakharova, A., Chimera Patterns in Networks: Interplay Between Dynamics, Structure, Noise, and Delay (2020), Springer International Publishing · Zbl 1451.93004
[29] Balázsi, G.; Cornell-Bell, A.; Neiman, A.; Moss, F., Phys. Rev. E, 64, 041912 (2001) · doi:10.1103/PhysRevE.64.041912
[30] Wang, Q.; Chen, G.; Perc, M., PLoS One, 6, 1, e15851 (2011) · doi:10.1371/journal.pone.0015851
[31] Yanagita, T.; Ichinomiya, T.; Oyama, Y., Phys. Rev. E, 72, 056218 (2005) · doi:10.1103/PhysRevE.72.056218
[32] Rabinovich, M.; Varona, P.; Selverston, A. I.; Abarbanel, H. D. I., Rev. Mod. Phys., 78, 1213 (2006) · doi:10.1103/RevModPhys.78.1213
[33] Ullner, E.; Zaikin, A.; Volkov, E.; Ojalvo, J., Phys. Rev. Lett., 99, 148103 (2007) · doi:10.1103/PhysRevLett.99.148103
[34] Chen, Y.; Xiao, J.; Liu, W.; Li, L.; Yang, Y., Phys. Rev. E, 80, 046206 (2009) · doi:10.1103/PhysRevE.80.046206
[35] Hens, C.; Pal, P.; Bhowmick, S.; Roy, P.; Sen, A.; Dana, S., Phys. Rev. E, 89, 3, 032901 (2014) · doi:10.1103/PhysRevE.89.032901
[36] Astakhov, S.; Gulai, A.; Fujiwara, N.; Kurths, J., Chaos, 26, 023102 (2016) · Zbl 1390.34122 · doi:10.1063/1.4940967
[37] Zhao, N.; Suna, Z.; Xu, W., Eur. Phys. J. B, 91, 20 (2018) · doi:10.1140/epjb/e2017-80463-2
[38] S Dixit, A.; Sharma, M. D. S., Phys. Lett. A, 383, 125930 (2019) · Zbl 1481.34049 · doi:10.1016/j.physleta.2019.125930
[39] Hens, C.; Olusola, O.; Pal, P.; Dana, S., Phys. Rev. E, 88, 3, 034902 (2013) · doi:10.1103/PhysRevE.88.034902
[40] Nandan, M.; Hens, C.; Pal, P.; Dana, S., Chaos, 24, 043103 (2014) · Zbl 1361.34034 · doi:10.1063/1.4897446
[41] Tsimring, L.; Rulkov, N. F.; Larsen, M. L.; Gabbay, M., Phys. Rev. Lett., 95, 014101 (2005) · doi:10.1103/PhysRevLett.95.014101
[42] Hong, H.; Strogatz, S., Phys. Rev. Lett., 106, 054102 (2011) · doi:10.1103/PhysRevLett.106.054102
[43] Maistrenko, Y.; Penkovsky, B.; Rosenblum, M., Phys. Rev. E, 89, 060901 (2014) · doi:10.1103/PhysRevE.89.060901
[44] Bera, B.; Hens, C.; Ghosh, D., Phys. Lett. A, 380, 31-32, 2366-2373 (2016) · doi:10.1016/j.physleta.2016.05.028
[45] Mishra, A.; Hens, C.; Bose, M.; Roy, P.; Dana, S., Phys. Rev. E, 92, 6, 062920 (2015) · doi:10.1103/PhysRevE.92.062920
[46] Mishra, A.; Saha, S.; Ghosh, D.; Osipov, G.; Dana, S., Opera Med. Physiol., 3, 14-18 (2017) · doi:10.20388/omp2017.001.0043
[47] Jaros, P.; Brezetsky, S.; Levchenko, R.; Dudkowski, D.; Kapitaniak, T.; Maistrenko, Y., Chaos, 28, 011103 (2018) · Zbl 1390.34136 · doi:10.1063/1.5019792
[48] Maistrenko, Y.; Penkovsky, B.; Rosenblum, M., Phys. Rev. E, 89, 060901 (2014) · doi:10.1103/PhysRevE.89.060901
[49] Teichmann, E.; Rosenblum, M., Chaos, 29, 093124 (2019) · Zbl 1423.34061 · doi:10.1063/1.5118843
[50] Shepelev, I.; Vadivasova, T., Nelineinaya Din. [Russ. J. Nonlinear Dyn.], 13, 317-329 (2017) · Zbl 1380.37136 · doi:10.20537/nd1703002
[51] Rybalova, E.; Semenova, N.; Strelkova, G.; Anishchenko, V., Eur. Phys. J. Spec. Top., 226, 9, 1857-1866 (2017) · doi:10.1140/epjst/e2017-70023-1
[52] Semenova, N.; Vadivasova, T.; Anishchenko, V., Eur. Phys. J. Spec. Top., 227, 1173-1183 (2018) · doi:10.1140/epjst/e2018-800035-y
[53] Shepelev, I.; Bukh, A.; Muni, S.; Anishchenko, V., Chaos, Solitons Fractals, 135, 109725 (2020) · Zbl 1489.34060 · doi:10.1016/j.chaos.2020.109725
[54] Rybalova, E.; Strelkova, G.; Anishchenko, V., Chaos, Solitons Fractals, 115, 300-305 (2018) · Zbl 1416.39010 · doi:10.1016/j.chaos.2018.09.003
[55] Rybalova, E.; Anishchenko, V.; Strelkova, G.; Zakharova, A., Chaos, 29, 071106 (2019) · Zbl 1420.34078 · doi:10.1063/1.5113789
[56] Mikhaylenko, M.; Ramlow, L.; Jalan, S.; Zakharova, A., Chaos, 29, 023122 (2019) · Zbl 1409.34070 · doi:10.1063/1.5057418
[57] Rybalova, E.; Klyushina, D.; Anishchenko, V.; Strelkova, G., Regul. Chaotic Dyn., 24, 432-445 (2019) · Zbl 1479.39021 · doi:10.1134/S1560354719040051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.