×

Spectral analysis of localized rotating waves in parabolic systems. (English) Zbl 1402.35105

Summary: In this paper, we study the spectra and Fredholm properties of Ornstein-Uhlenbeck operators \[ \begin{aligned} \mathcal{L}v(x):=A\Delta v(x)+\langle Sx, \nabla v(x)\rangle +Df(v_\star(x))v(x),\\ x\in\mathbb R^d, \,d\geq 2, \end{aligned} \] where \(v_\star:\mathbb R^d\to\mathbb R^m\) is the profile of a rotating wave satisfying \(v_\star\to v_\infty\in\mathbb R^m\) as \(|x|\to\infty\), the map \(f:\mathbb R^m\to\mathbb R^m\) is smooth and the matrix \(A\in\mathbb R^{m,m}\) has eigenvalues with positive real parts and commutes with the limit matrix \(Df(v_\infty)\). The matrix \(S\in\mathbb R^{d,d}\) is assumed to be skew-symmetric with eigenvalues \((\lambda,\ldots,\lambda_d)=(\pm\mathrm{i}\sigma_1,\ldots,\pm\mathrm{i}\sigma_k,0,\ldots,0)\). The spectra of these linearized operators are crucial for the nonlinear stability of rotating waves in reaction-diffusion systems. We prove under appropriate conditions that every \(\lambda\in\mathbb C\) satisfying the dispersion relation \[ \begin{aligned} \mathrm{det}(\lambda I_m+\eta^2 A-Df(v_\infty)+\mathrm{i}\langle n,\sigma\rangle I_m)=0 \\ \text{for some}\,\,\eta\in\mathbb R \,\,\text{and}\,\, n\in \mathbb Z^k,\\ \sigma=(\sigma_1,\ldots,\sigma_k)^\top\,\in\mathbb R^k \end{aligned} \] belongs to the essential spectrum \(\sigma_{\mathrm{ess}}(\mathcal{L})\) in \(L^p\). For values \(\operatorname{Re}\lambda\) to the right of the spectral bound for \(Df(v_\infty)\), we show that the operator \(\lambda I-\mathcal{L}\) is Fredholm of index 0, solve the identification problem for the adjoint operator \((\lambda I-\mathcal{L})^\ast\) and formulate the Fredholm alternative. Moreover, we show that the set \[ \sigma(S)\cup\{\lambda_i+\lambda_j:\lambda_i,\lambda_j\in\sigma(S),\,1 leq i<j\leq d\} \] belongs to the point spectrum \(\sigma_{\mathrm{pt}}(\mathcal{L})\) in \(L^p\). We determine the associated eigenfunctions and show that they decay exponentially in space. As an application, we analyse spinning soliton solutions which occur in the Ginzburg-Landau equation and compute their numerical spectra as well as associated eigenfunctions. Our results form the basis for investigating the nonlinear stability of rotating waves in higher space dimensions and truncations to bounded domains.

MSC:

35J47 Second-order elliptic systems
35B35 Stability in context of PDEs
35P05 General topics in linear spectral theory for PDEs
35K45 Initial value problems for second-order parabolic systems

Software:

COMSOL
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Beyn, W-J; Otten, D., Spatial decay of rotating waves in reaction diffusion systems, Dyn. Partial Differ. Equ., 13, 191-240, (2016) · Zbl 1348.35106 · doi:10.4310/DPDE.2016.v13.n3.a2
[2] Otten, D., Exponentially weighted resolvent estimates for complex Ornstein-Uhlenbeck systems, J. Evol. Equ., 15, 753-799, (2015) · Zbl 1338.47049 · doi:10.1007/s00028-015-0279-1
[3] Otten, D., The identification problem for complex-valued Ornstein-Uhlenbeck operators in Embedded ImageEmbedded Image, Semigroup Forum, 95, 13-50, (2017)
[4] Kato, T., Perturbation theory for linear operators. Classics in Mathematics, (1995), Springer · Zbl 0836.47009
[5] Edmunds, DE; Evans, WD, \(Spectral theory and differential operators\). Oxford Mathematical Monographs, (1987), The Clarendon Press
[6] Otten, D., Spatial decay and spectral properties of rotating waves in parabolic systems. PhD thesis, Bielefeld University, Bielefeld, Germany. Published by Shaker, Aachen, Germany. See www.math.uni-bielefeld.de/dotten/files/diss/Diss_DennyOtten.pdf, (2014)
[7] Cialdea, A.; Maz’ya, V., Criterion for the \(L\)\^{}{\(p\)}-dissipativity of second order differential operators with complex coefficients, J. Math. Pures Appl., 84, 1067-1100, (2005) · Zbl 1093.47047 · doi:10.1016/j.matpur.2005.02.003
[8] Cialdea, A.; Maz′ya, V., Criteria for the \(L\)\^{}{\(p\)}-dissipativity of systems of second order differential equations, Ric. Mat., 55, 233-265, (2006) · Zbl 1189.47043 · doi:10.1007/s11587-006-0014-x
[9] Gustafson, K., The angle of an operator and positive operator products, Bull. Am. Math. Soc., 74, 488-492, (1968) · Zbl 0172.40702 · doi:10.1090/S0002-9904-1968-11974-3
[10] Gustafson, K., \(Antieigenvalue analysis: with applications to numerical analysis, wavelets, statistics, quantum mechanics, finance and optimization\), (2012), World Scientific · Zbl 1242.26003
[11] Otten, D., A new \(L\)\^{}{\(p\)}-antieigenvalue condition for Ornstein-Uhlenbeck operators, J. Math. Anal. Appl., 444, 136-152, (2016) · Zbl 1353.47067
[12] Henry, D., Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics, vol. 840, (1981), Springer · Zbl 0456.35001
[13] Beyn, W-J; Lorenz, J., Nonlinear stability of rotating patterns, Dyn. Partial Differ. Equ., 5, 349-400, (2008) · Zbl 1173.35018 · doi:10.4310/DPDE.2008.v5.n4.a4
[14] Bloch, AM; Iserles, A., Commutators of skew-symmetric matrices, Int. J. Bifurcation Chaos Appl. Sci. Eng., 15, 793-801, (2005) · Zbl 1100.17004 · doi:10.1142/S0218127405012417
[15] Taussky, O.; Wielandt, H., On the matrix function \(A\)\(X\)+\(X\)\^{}{′}\(A\)\^{}{′}, Arch. Rat. Mech. Anal., 9, 93-96, (1962) · Zbl 0101.25402 · doi:10.1007/BF00253335
[16] Biktasheva, IV; Holden, AV; Biktashev, VN, Localization of response functions of spiral waves in the FitzHugh-Nagumo system, Int. J. Bifurcation Chaos Appl. Sci. Eng., 16, 1547-1555, (2006) · Zbl 1145.35399 · doi:10.1142/S0218127406015490
[17] Beyn, W-J; Otten, D.; Rottmann-Matthes, J., Stability and computation of dynamic patterns in PDEs. In \(Current challenges in stability issues for numerical differential equations\) (eds L Dieci, N Guglielmi), pp. 89-172. Lecture Notes in Mathematics. Berlin, Germany: Springer International Publishing, (2014)
[18] Beyn, W-J; Thümmler, V., Freezing solutions of equivariant evolution equations, SIAM J. Appl. Dyn. Syst., 3, 85-116, (2004) · Zbl 1061.65078 · doi:10.1137/030600515
[19] Multiphysics 5.2. See http://www.comsol.com, (2016)
[20] Da Prato, G.; Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal., 131, 94-114, (1995) · Zbl 0846.47004 · doi:10.1006/jfan.1995.1084
[21] Kozhan, RV, \(L\)\^{}{1}-spectrum of Banach space valued Ornstein-Uhlenbeck operators, Semigroup Forum, 78, 547-553, (2009) · Zbl 1166.47042 · doi:10.1007/s00233-008-9088-y
[22] Metafune, G., \(L\)\^{}{\(p\)}-spectrum of Ornstein-Uhlenbeck operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 30, 97-124, (2001) · Zbl 1065.35216
[23] Metafune, G.; Pallara, D.; Priola, E., Spectrum of Ornstein-Uhlenbeck operators in \(L\)\^{}{\(p\)} spaces with respect to invariant measures, J. Funct. Anal., 196, 40-60, (2002) · Zbl 1027.47036 · doi:10.1006/jfan.2002.3978
[24] van Neerven, JMAM, Second quantization and the \(L\)\^{}{\(p\)}-spectrum of nonsymmetric Ornstein-Uhlenbeck operators, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8, 473-495, (2005) · Zbl 1089.35083 · doi:10.1142/S0219025705002074
[25] Fiedler, B.; Scheel, A., Spatio-temporal dynamics of reaction-diffusion patterns. In \(Trends in nonlinear analysis\) (eds M Kirkilionis, S Krömker, R Rannacher, F Tomi), pp. 23-152. Berlin, Germany: Springer, (2003)
[26] Sandstede, B.; Scheel, A., Absolute versus convective instability of spiral waves, Phys. Rev. E, 62, 7708-7714, (2000) · doi:10.1103/PhysRevE.62.7708
[27] Sandstede, B.; Scheel, A., Superspiral structures of meandering and drifting spiral waves, Phys. Rev. Lett., 86, 171-174, (2001) · doi:10.1103/PhysRevLett.86.171
[28] Sandstede, B.; Scheel, A., Curvature effects on spiral spectra: generation of point eigenvalues near branch points, Phys. Rev. E, 73, 016 217-016 200, (2006) · doi:10.1103/PhysRevE.73.016217
[29] Wheeler, P.; Barkley, D., Computation of spiral spectra, SIAM J. Appl. Dyn. Syst., 5, 157-177, (2006) · Zbl 1093.35014 · doi:10.1137/050624273
[30] Alonso, S.; Bär, M.; Panfilov, AV, Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics, Bull. Math. Biol., 75, 1351-1376, (2013) · Zbl 1272.92019 · doi:10.1007/s11538-012-9748-7
[31] Foulkes, AJ; Barkley, D.; Biktashev, VN; Biktasheva, IV, Alternative stable scroll waves and conversion of autowave turbulence, Chaos, 20, 043136, (2010) · doi:10.1063/1.3517079
[32] Gebran, HG; Stuart, CA, Exponential decay and Fredholm properties in second-order quasilinear elliptic systems, J. Differ. Equ., 249, 94-117, (2010) · Zbl 1194.35181 · doi:10.1016/j.jde.2010.03.001
[33] Rabier, PJ; Stuart, CA, Exponential decay of the solutions of quasilinear second-order equations and Pohozaev identities, J. Differ. Equ., 165, 199-234, (2000) · Zbl 0965.35046 · doi:10.1006/jdeq.1999.3749
[34] Pogan, A.; Scheel, A., Fredholm properties of radially symmetric, second order differential operators, Int. J. Dyn. Syst. Differ. Equ., 3, 289-327, (2011) · Zbl 1246.47011 · doi:10.1504/IJDSDE.2011.041878
[35] Volpert, V., Elliptic partial differential equations. Vol. 1. Fredholm theory of elliptic problems in unbounded domains. Monographs in Mathematics, vol. 101, (2011), Birkhäuser · Zbl 1222.35002
[36] Sandstede, B.; Scheel, A.; Wulff, C., Dynamics of spiral waves on unbounded domains using center-manifold reductions, J. Differ. Equ., 141, 122-149, (1997) · Zbl 0888.35053 · doi:10.1006/jdeq.1997.3326
[37] Ermentrout, B.; van der Ventel, BIS, Rotating waves in simple scalar excitable media: approximations and numerical solutions, J. Math. Biol., 73, 1321-1351, (2016) · Zbl 1350.92003 · doi:10.1007/s00285-016-0988-2
[38] Beyn, W-J; Otten, D.; Rottmann-Matthes, J., In press. Freezing traveling and rotating waves in second order evolution equations. In \(Patterns of dynamics\) (eds P Gurevich, J Hell, B Sandstede, A Scheel). Springer Proceedings in Mathematics and Statistics, vol. 205
[39] Prüss, J.; Rhandi, A.; Schnaubelt, R., The domain of elliptic operators on Embedded ImageEmbedded Image with unbounded drift coefficients, Houston J. Math., 32, 563-576, (2006) · Zbl 1229.35043
[40] van Neerven, JMAM; Zabczyk, J., Norm discontinuity of Ornstein-Uhlenbeck semigroups, Semigroup Forum, 59, 389-403, (1999) · Zbl 0960.47024 · doi:10.1007/s002339900058
[41] Alt, HW, \(Lineare Funktionalanalysis: Eine anwendungsorientierte Einführung\), (2006), Springer
[42] Taylor, AE; Lay, DC, \(Introduction to functional analysis\), (1980), John Wiley & Sons
[43] Landau, LD; Ginzburg, VL, On the theory of superconductivity, J. Exp. Theor. Phys. (USSR), 20, 1064, (1950)
[44] Crasovan, L-C; Malomed, BA; Mihalache, D., Spinning solitons in cubic-quintic nonlinear media, Pramana J. Phys., 57, 1041-1059, (2001) · doi:10.1007/s12043-001-0013-0
[45] Engel, K-J; Nagel, R., One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics, vol. 194, (2000), Springer · Zbl 0952.47036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.