×

Meshfree methods: a comprehensive review of applications. (English) Zbl 1404.74199

Summary: The meshfree methods in computational mechanics have been actively proposed and increasingly developed in order to overcome some drawbacks in the conventional numerical methods. Over past three decades meshfree methods have found their way into many different application areas ranging from classical astronomical problems to solid mechanics analysis, fluid flow problems, vibration analysis, heat transfer and optimization to the numerical solution of all kind of (partial) differential equation problems. The present work is an effort to provide a comprehensive review of various meshfree methods, their classification, underlying methodology, application area along with their advantages and limitations. Key contributions of mesh free techniques to the area of fracture mechanics have been discussed with applications of element free Galerkin method (EFGM) to fracture analysis as primary concern.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
74R10 Brittle fracture
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Afshar, A., Daneshyar, A. and Mohammadi, S. [2015] “ XFEM analysis of fiber bridging in mixed-mode crack propagation in composites,” Compos. Struct.125, 314-327.
[2] Ahmadi, I. and Aghdam, M. M. [2010] “ Micromechanics of fibrous composites subjected to combined shear and thermal loading using a truly meshless method,” Comput. Mech.46, 387-398. · Zbl 1398.74243
[3] Aluru, N. R. [1999] “ Reproducing kernel particle method for meshless analysis of microelectromechanical systems,” Comput. Mech.23, 324-338. · Zbl 0949.74077
[4] An, X., Ma, G., Cai, Y. and Zhu, H. [2011] “ A new way to treat material discontinuities in the numerical manifold method,” Comput. Methods Appl. Mech. Eng.200, 3296-3308. · Zbl 1230.74219
[5] An, X. M., Zhao, Z. Y., Zhang, H. H. and He, L. [2013] “ Modeling bimaterial interface cracks using the numerical manifold method,” Eng. Anal. Bound. Elem.37, 464-474. · Zbl 1351.74166
[6] Asadpoure, A. and Mohammadi, S. [2007] “ Developing new enrichment functions for crack simulation in orthotropic media by the extended finite element method,” Int. J. Numer. Methods Eng.69, 2150-2172. · Zbl 1194.74358
[7] Asadpoure, A., Mohammadi, S. and Vafai, A. [2006] “ Modeling crack in orthotropic media using a coupled finite element and partition of unity methods,” Finite Elem. Anal. Des.42, 1165-1175.
[8] Atluri, S. N., Cho, J. Y. and Kim, H. G. [1999a] “ Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations,” Comput. Mech.24, 334-347. · Zbl 0968.74079
[9] Atluri, S. N., Kim, H. G. and Cho, J. Y. [1999b] “ Critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods,” Comput. Mech.24, 348-372. · Zbl 0977.74593
[10] Atluri, S. N. and Zhu, T. [1998] “ A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech.22, 117-127. · Zbl 0932.76067
[11] Atluri, S. N. and Zhu, T. L. [2000] “ The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics,” Comput. Mech.25, 169-179. · Zbl 0976.74078
[12] Balachandran, G. R., Rajagopal, A. and Sivakumar, S. M. [2008] “ Meshfree Galerkin method based on natural neighbors and conformal mapping,” Comput. Mech.42, 885-905. · Zbl 1163.74562
[13] Batra, R. C., Porfiri, M. and Spinello, D. [2004] “ Treatment of material discontinuity in two meshless local Petrov-Galerkin (MLPG) formulations of axisymmetric transient heat conduction,” Int. J. Numer. Methods Eng.61, 2461-2479. · Zbl 1075.80001
[14] Batra, R. C., Porfiri, M. and Spinello, D. [2008] “ Free and forced vibrations of a segmented bar by a Meshless Local Petrov-Galerkin (MLPG) formulation,” Comput. Mech.41, 473-491. · Zbl 1162.74494
[15] Batra, R. C. and Zhang, G. M. [2007] “ Search algorithm, and simulation of elastodynamic crack propagation by modified smoothed particle hydrodynamics (MSPH) method,” Comput. Mech.40, 531-546. · Zbl 1178.74178
[16] Bayesteh, H., Afshar, A. and Mohammdi, S. [2015] “ Thermo-mechanical fracture study of inhomogeneous cracked solids by the extended isogeometric analysis method,” Eur. J. Mech. — A/Solids51, 123-139. · Zbl 1406.74044
[17] Bayesteh, H. and Mohammadi, S. [2011] “ XFEM fracture analysis of shells: The effect of crack tip enrichments,” Comput. Mater. Sci.50, 2793-2813.
[18] Bayesteh, H. and Mohammadi, S. [2013] “ XFEM fracture analysis of orthotropic functionally graded materials,” Compos. Part B Eng.44, 8-25.
[19] Belytschko, T. and Black, T. [1999] “ Elastic crack growth in finite elements with minimal remeshing,” Int. J. Numer. Methods Eng.45, 601-620. · Zbl 0943.74061
[20] Belytschko, T. and Fleming, M. [1999] “ Smoothing, enrichment and contact in the element-free Galerkin method,” Comput. Struct.71, 173-195.
[21] Belytschko, T., Lu, Y. Y. and Gu, L. [1994a] “ Element free Galerkin methods,” Int. J. Numer. Methods Eng.37, 229-256. · Zbl 0796.73077
[22] Belytschko, T., Gu, L. and Lu, Y. Y. [1994b] “ Fracture and crack growth by element-free Galerkin methods,” Model. Simul. Mater. Sci. Eng.2, 519-534.
[23] Belytschko, T., Krongauz, Y. and Fleming, M. [1996] “ Smoothing and accelerated computations in the element free Galerkin method,” J. Comput. Appl. Math.74, 111-126. · Zbl 0862.73058
[24] Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P. [1996b] “ Meshless methods: An overview and recent developments,” Comput. Method. Appl. Mech. Eng.139, 3-47. · Zbl 0891.73075
[25] Belytschko, T., Lu, Y. Y. and Gu, L. [1995a] “ Crack propagation by element-free Galerkin methods,” Eng. Fract. Mech.51, 295-315.
[26] Belytschko, T., Organ, D. and Krongauz, Y. [1995b] “ A coupled finite element-element-free Galerkin method,” Comput. Mech.17, 186-195. · Zbl 0840.73058
[27] Belytschko, T., Rabczuk, T., Huerta, A. and Fern, S. [2004] “ Meshfree methods,” Encycl Comput. Mech.
[28] Belytschko, T., Ventura, G. and Xu, J. [2000] “ New methods for discontinuity and crack modeling in EFG,” Comput. Sci. Eng. — Meshfree Methods Partial Differ. Equations26, 37-50. · Zbl 1036.74049
[29] Bhardwaj, G., Singh, I. V., Mishra, B. K. and Bui, T. Q. [2015] “ Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions,” Compos. Struct.126, 347-359.
[30] Bhattacharya, S., Singh, I. V. and Mishra, B. K. [2013] “ Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM,” Int. J. Fract.183, 81-97.
[31] Björck, Å. [1994] “ Numerics of Gram-Schmidt orthogonalization,” Linear Algebra Appl.197-198, 297-316. · Zbl 0801.65039
[32] Boroomand, B., Najjar, M. and Oñate, E. [2009] “ The generalized finite point method,” Comput. Mech.44, 173-190. · Zbl 1165.74047
[33] Bouhala, L., Shao, Q. and Koutsawa, Y. [2013] “ An XFEM crack-tip enrichment for a crack terminating at a bi-material interface,” Eng. Fract. Mech.102, 51-64.
[34] Breitkopf, P., Touzot, G. and Villon, P. [2000] “ Double grid diffuse collocation method,” Comput. Mech.25, 199-206. · Zbl 0979.74077
[35] Brighenti, R. [2005] “ Application of the element-free Galerkin meshless method to 3D fracture mechanics problems,” Eng. Fract. Mech.72, 2808-2820.
[36] Budyn, E., Zi, G., Moes, N. and Belytschko, T. [2004] “ A method for multiple crack growth in brittle materials without remeshing,” Int. J. Numer. Methods Eng.61, 1741-1770. · Zbl 1075.74638
[37] Bui, T. Q., Nguyen, M. N., Zhang, C. and Pham, D. A. K. [2011] “ An efficient meshfree method for analysis of two-dimensional piezoelectric structures,” Smart Mater. Struct.20, 65016.
[38] Cao, Y., Yao, L. and Yin, Y. [2013] “ New treatment of essential boundary conditions in EFG method by coupling with RPIM,” Acta Mech. Solida Sin.26, 302-316.
[39] Chamat, A., Aden-Ali, S. and Gilgert, J. [2013] “ Crack behavior in zinc coating and at the interface zinc-hot galvanised TRIP steel 800,” Eng. Fract. Mech.114, 12-25.
[40] Chang-chun, W., Peixiang, H. and Ziran, L. [2002] “ Extension of J integral to dynamic fracture of functional graded material and numerical analysis,” Comput. Struct.80, 411-416.
[41] Chen, J.-S., Pan, C., Roque, C. M. O. L. and Wang, H.-P. [1998a] “ A Lagrangian reproducing kernel particle method for metal forming analysis,” Comput. Mech.22, 289-307. · Zbl 0928.74115
[42] Chen, J.-S., Roque, C. M. O. L., Pan, C. and Button, S. T. [1998b] “ Analysis of metal forming process based on meshless method,” J. Mater. Process Technol.80-81, 642-646.
[43] Chen, J.-S. and Wang, H.-P. [2000] “ New boundary condition treatments in meshfree computation of contact problems,” Comput. Methods Appl. Mech. Eng.187, 441-468. · Zbl 0980.74077
[44] Chen, J.-S., Wang, H.-P., Yoon, S. and You, Y. [2000a] “ Some recent improvements in meshfree methods for incompressible finite elasticity boundary value problems with contact,” Comput. Mech.25, 137-156. · Zbl 0978.74085
[45] Chen, J., Wu, L. and Du, S. [2000b] “ A modified J integral for functionally graded materials,” Mech. Res. Commun.27, 301-306. · Zbl 0951.74578
[46] Chen, J., Wu, C., Yoon, S. and You, Y. [2001a] “ A stabilized conforming nodal integration for Galerkin mesh-free methods,” Int. J. Numer. Methods Eng.50, 435-466. · Zbl 1011.74081
[47] Chen, J. K., Beraun, J. E. and Jih, C. J. [1999a] “ Improvement for tensile instability in smoothed particle hydrodynamics,” Comput. Mech.23, 279-287. · Zbl 0949.74078
[48] Chen, J. K., Beraun, J. E. and Jih, C. J. [1999b] “ Completeness of corrective smoothed particle method for linear elastodynamics,” Comput. Mech.24, 273-285. · Zbl 0967.74078
[49] Chen, J. K., Beraun, J. E. and Jih, C. J. [2001b] “ A corrective smoothed particle method for transient elastoplastic dynamics,” Comput. Mech.27, 177-187. · Zbl 1014.74080
[50] Cheng, R. and Liew, K. M. [2009] “ The reproducing kernel particle method for two-dimensional unsteady heat conduction problems,” Comput. Mech.45, 1-10. · Zbl 1398.74065
[51] Cheng, Y. M., Bai, F. N. and Peng, M. J. [2014] “ A novel interpolating element-free Galerkin (IEFG) method for two-dimensional elastoplasticity,” Appl. Math. Model.38, 5187-5197. · Zbl 1449.74196
[52] Ching, H. K. and Yen, S. C. [2005] “ Meshless local Petrov-Galerkin analysis for 2D functionally graded elastic solids under mechanical and thermal loads,” Compos. Part B Eng.36, 223-240.
[53] Chiou, Y.-J., Lee, Y.-M. and Tsay, R.-J. [2002] “ Mixed mode fracture propagation by manifold method,” Int. J. Fract.114, 327-347.
[54] Chung, H.-J. and Belytschko, T. [1998] “ An error estimate in the EFG method,” Comput. Mech.21, 91-100. · Zbl 0910.73060
[55] Cordes, L. W. and Moran, B. [1996] “ Treatment of material discontinuity in the Element-Free Galerkin method,” Comput. Methods Appl. Mech. Eng.139, 75-89. · Zbl 0918.73331
[56] Dai, K. Y., Liu, G. R., Han, X. and Lim, K. M. [2005] “ Thermomechanical analysis of functionally graded material (FGM) plates using element-free Galerkin method,” Comput. Struct.83, 1487-1502.
[57] Dai, K. Y., Liu, G. R. and Lim, K. M. [2004] “ A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates,” Comput. Mech.34, 213-223. · Zbl 1138.74417
[58] Deeks, A. J. and Augarde, C. E. [2005] “ A meshless local Petrov-Galerkin scaled boundary method,” Comput. Mech.36, 159-170. · Zbl 1138.74418
[59] Dolbow, J. and Belytschko, T. [1998] “ An introduction to programming the meshless element free Galerkin method,” Arch. Comput. Methods Eng.5, 207-241.
[60] Dolbow, J. and Belytschko, T. [1999] “ Numerical integration of the Galerkin weak form in meshfree methods,” Comput. Mech.23, 219-230. · Zbl 0963.74076
[61] Dolbow, J., Moës, N. and Belytschko, T. [2000] “ Discontinuous enrichment in finite elements with a partition of unity method,” Finite Elem. Anal. Des.36, 235-260. · Zbl 0981.74057
[62] Dong, Y., Wu, S. and Xu, S. S. [2009] “ Fracture of concrete structure using simplified meshless method,” Cem. Concr. Res.39, 966-972.
[63] Donning, B. M. and Liu, W. K. [1998] “ Meshless methods for shear-deformable Beams and Plates,” Comput. Methods Appl. Mech. Eng.152, 47-71. · Zbl 0959.74079
[64] Duflot, M. [2008] “ The extended finite element method in thermoelastic fracture mechanics,” Int. J. Numer. Methods Eng.74, 827-847. · Zbl 1195.74170
[65] Duflot, M. and Nguyen-Dang, H. [2004] “ A meshless method with enriched weight functions for fatigue crack growth,” Int. J. Numer. Methods Eng.59, 1945-1961. · Zbl 1060.74664
[66] Erkmen, R. E. and Bradford, M. A. [2010] “ Elimination of slip-locking in composite beam-column analysis by using the element-free Galerkin method,” Comput. Mech.46, 911-924. · Zbl 1344.74057
[67] Fan, S. C., Liu, X. and Lee, C. K. [2004] “ Enriched partition-of-unity finite element method for stress intensity factors at crack tips,” Comput. Struct.82, 445-461.
[68] Fleming, M., Chu, Y., Moran, B. and Belytschko, T. [1997] “ Enriched element-free Galerkin methods for crack tip fields,” Int. J. Numer. Methods Eng.40, 1483-1504.
[69] Garg, S. and Pant, M. [2016] “ Numerical simulation of thermal fracture in functionally graded materials using element free Galerkin method,” Sadhana — Acad. Proc. Eng. Sci.42, 417-431. · Zbl 1378.74064
[70] Garg, S. and Pant, M. [2017] “ Numerical simulation of adiabatic and isothermal cracks in functionally graded materials using optimized element-free Galerkin method,” J. Therm. Stress0, 1-20.
[71] Gavete, L., Falcon, S. and Bellido, J. C. [2000] “ Dirichlet boundary conditions in element free Galerkin method,” European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, , pp. 1-14.
[72] Ghorashi, S. S., Mohammadi, S. and Sabbagh-Yazdi, S.-R. [2011] “ Orthotropic enriched element free Galerkin method for fracture analysis of composites,” Eng. Fract. Mech.78, 1906-1927.
[73] Gingold, R. A. and Monaghan, J. J. [1977] “ Smoothed particle hydrodynamics-theory and application to non-spherical stars,” Mon. Not. R. Astron. Soc.181, 375-389. · Zbl 0421.76032
[74] Gope, P. C., Bisht, N. and Singh, V. K. [2014] “ Influence of crack offset distance on interaction of multiple collinear and offset edge cracks in a rectangular plate,” Theor. Appl. Fract. Mech.70, 19-29.
[75] Gosz, J. and Liu, W. K. [1996] “ Admissible Approximations for Essential Boundary Conditions in the Reproducing Kernel Particle Method,” Comput. Mech.19, 1-43. · Zbl 0889.73078
[76] Gu, Y. T. and Liu, G. R. [2001] “ A Meshless Local Petrov-Galerkin (MLPG) method for free and forced vibration analyses for solids,” Comput. Mech.27, 188-198. · Zbl 1162.74498
[77] Gu, Y. T. and Liu, G. R. [2004] “ A meshfree weak-strong (MWS) form method for time dependent problems,” Comput. Mech.35, 134-145. · Zbl 1109.74371
[78] Gu, Y. T., Wang, W., Zhang, L. C. and Feng, X. Q. [2011] “ An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields,” Eng. Fract. Mech.78, 175-190.
[79] Gu, Y. T. and Zhang, L. C. [2008] “ Coupling of the meshfree and finite element methods for determination of the crack tip fields,” Eng. Fract. Mech.75, 986-1004.
[80] Günther, F. C. and Liu, W. K. [1998] “ Implementation of boundary conditions for meshless methods,” Comput. Methods Appl. Mech. Eng.163, 205-230. · Zbl 0963.76068
[81] Guo, X., Fang, D. and Kah, A. [2006] “ Analysis of piezoelectric ceramic multilayer actuators based on an electro-mechanical coupled meshless method,” Acta Mech. Sin.22, 34-39. · Zbl 1200.74054
[82] Hillerborg, A., Modéer, M. and Petersson, P. E. [1976] “ Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements,” Cem. Concr. Res.6, 773-781.
[83] Jameel, A. and Harmain, G. A. [2015] “ Fatigue crack growth in presence of material discontinuities by EFGM,” Int. J. Fatigue81, 105-116.
[84] Jeong, J. H., Jhon, M. S., Halow, J. S. and Van Osdol, J. [2003] “ Smoothed particle hydrodynamics: Applications to heat conduction,” Comput. Phys. Commun.153, 71-84. · Zbl 1196.82015
[85] Kargarnovin, M. H., Toussi, H. E. and Fariborz, S. J. [2004] “ Elasto-plastic element-free Galerkin method,” Comput. Mech.33, 206-214. · Zbl 1067.74071
[86] KC, A. and Kim, J.-H. [2008] “ Interaction integrals for thermal fracture of functionally graded materials,” Eng. Fract. Mech.75, 2542-2565.
[87] Khoei, A. R., Samimi, M. and Azami, A. R. [2007] “ Reproducing kernel particle method in plasticity of pressure-sensitive material with reference to powder forming process,” Comput. Mech.39, 247-270. · Zbl 1166.74052
[88] Khosravifard, A., Hematiyan, M. R., Bui, T. Q. and Do, T. V. [2016] “ Accurate and efficient analysis of stationary and propagating crack problems by meshless methods,” Theor. Appl. Fract. Mech.87, 21-34.
[89] Kim, N. H., Choi, K. K., Chen, J. S. and Park, Y. H. [2000] “ Meshless shape design sensitivity analysis and optimization for contact problem with friction,” Comput. Mech.25, 157-168. · Zbl 0982.74053
[90] Kitipornchai, S., Liew, K. M. and Cheng, Y. [2005] “ A boundary element-free method (BEFM) for three-dimensional elasticity problems,” Comput. Mech.36, 13-20. · Zbl 1109.74372
[91] Koohkan, H., Baradaran, G. and Vaghefi, R. [2009] “ A completely meshless analysis of cracks in isotropic functionally graded materials (Petrov-Galerki),” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.224, 581-590.
[92] Krongauz, Y. and Belytschko, T. [1997] “ A Petrov-Galerkin Diffuse Element Method (PG DEM) and its comparison to EFG,” Comput. Mech.19, 327-333. · Zbl 1031.74527
[93] Krysl, P. and Belytschko, T. [1995] “ Analysis of thin plates by the element-free Galerkin method,” Comput. Mech.17, 26-35. · Zbl 0841.73064
[94] Kumar, S., Singh, I. V. and Mishra, B. K. [2014] “ A coupled finite element and element-free Galerkin approach for the simulation of stable crack growth in ductile materials,” Theor. Appl. Fract. Mech.70, 49-58.
[95] Lam, K. Y., Wang, Q. X. and Li, H. [2004] “ A novel meshless approach — Local Kriging (LoKriging) method with two-dimensional structural analysis,” Comput. Mech.33, 235-244. · Zbl 1067.74074
[96] Lancaster, P. and Salkauskas, K. [1981] “ Surfaces generated by moving least squares methods,” Math. Comput.37, 141. · Zbl 0469.41005
[97] Lee, C. K. and Shuai, Y. Y. [2007] “ An automatic adaptive refinement procedure for the reproducing kernel particle method. Part I: Stress recovery and a posteriori error estimation,” Comput. Mech.40, 399-413. · Zbl 1178.74181
[98] Lee, C. K. and Shuai, Y. Y. [2007] “ An automatic adaptive refinement procedure for the reproducing kernel particle method. Part II: Adaptive refinement,” Comput. Mech.40, 415-427. · Zbl 1178.74180
[99] Lee, S.-H., Kim, K.-H. and Yoon, Y.-C. [2015] “ Particle difference method for dynamic crack propagation,” Int. J. Impact Eng.87, 1-14.
[100] Lee, S.-H. and Yoon, Y.-C. [2004] “ Numerical prediction of crack propagation by an enhanced element-free Galerkin method,” Nucl. Eng. Des.227, 257-271.
[101] Lee, S., Kim, H. and Jun, S. [2000] “ Two scale meshfree method for the adaptivity of 3D stress concentration problems,” Comput. Mech.26, 376-387. · Zbl 0986.74076
[102] Li, M., Meng, L. X., Hinneh, P. and Wen, P. H. [2016] “ Finite block method for interface cracks,” Eng. Fract. Mech.156, 25-40.
[103] Li, S., Hao, W. and Liu, W. K. [2000] “ Numerical simulations of large deformation of thin shell structures using meshfree methods,” Comput. Mech.25, 102-116. · Zbl 0978.74087
[104] Li, S., Liu, W. K. and Rosakis, A. J. [2002] “ Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition,” Int. J. Solids Struct.39, 1213-1240. · Zbl 1090.74698
[105] Li, S. C., Li, S. C. and Cheng, Y. M. [2005] “ Enriched meshless manifold method for two-dimensional crack modeling,” Theor. Appl. Fract. Mech.44, 234-248.
[106] Li, Y., Feng, W. and Xu, Z. [2009] “ Fracture analysis of cracked 2D planar and axisymmetric problems of magneto-electro-elastic materials by the MLPG coupled with FEM,” Comput. Methods Appl. Mech. Eng.198, 2347-2359. · Zbl 1229.74133
[107] Libersky, L. D., Petschek, A. G. and Carney, T. C. [1993] “ High Strain Lagrangian Hydrodynamics,” J. Comput. Phys.109, 67-75. · Zbl 0791.76065
[108] Liew, K. M., Lim, H. K., Tan, M. J. and He, X. Q. [2002a] “ Analysis of laminated composite beams and plates with piezoelectric patches using the element-free Galerkin method,” Comput. Mech.29, 486-497. · Zbl 1146.74370
[109] Liew, K. M., Peng, L. X. and Kitipornchai, S. [2006] “ Buckling analysis of corrugated plates using a meshfree Galerkin method based on the first-order shear deformation theory,” Comput. Mech.38, 61-75. · Zbl 1138.74333
[110] Liew, K. M., Wu, H. Y. and Ng, T. Y. [2002b] “ Meshless method for modeling of human proximal femur treatment of nonconvex boundaries and stress analysis,” Comput. Mech.28, 390-400. · Zbl 1038.74053
[111] Liew, K. M., Zhao, X. and Ferreira, A. J. M. [2011] “ A review of meshless methods for laminated and functionally graded plates and shells,” Compos. Struct.93, 2031-2041.
[112] Liu, G. R., Dai, K. Y., Han, X. and Li, Y. [2006] “ A mesh-free minimum length method for 2D problems,” Comput. Mech.38, 533-550. · Zbl 1168.74468
[113] Liu, G. R., Dai, K. Y., Lim, K. M. and Gu, Y. T. [2003] “ A radial point interpolation method for simulation of two-dimensional piezoelectric structures,” Smart Mater. Struct.171, 171-180.
[114] Liu, G. R. and Gu, Y. T. [2000a] “ Coupling of element free Galerkin and hybrid boundary element methods using modified variational formulation,” Comput. Mech.26, 166-173. · Zbl 0994.74078
[115] Liu, G. R. and Gu, Y. T. [2000b] “ Meshless local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches,” Comput. Mech.26, 536-546. · Zbl 0990.74070
[116] Liu, G. R. and Gu, Y. T. [2002] “ Comparisons of two meshfree local point interpolation methods for structural analyses,” Comput. Mech.29, 107-121. · Zbl 1053.74659
[117] Liu, G. R. and Gu, Y. T. [2004] “ A meshfree method: Meshfree weak-strong (MWS) form method, for 2D solids,” Comput. Mech.33, 2-14. · Zbl 1063.74105
[118] Liu, G. R. and Liu, M. B. [2003] Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific. · Zbl 1046.76001
[119] Liu, G. R., Zhang, G. Y., Gu, Y. T. and Wang, Y. [2005] “ A meshfree radial point interpolation method (RPIM ) for three-dimensional solids,” Comput. Mech.36, 421-430. · Zbl 1138.74420
[120] Liu, M. B. and Liu, G. R. [2010] “ Smoothed particle hydrodynamics (SPH): An overview and recent developments,” Arch. Comput. Methods Eng.17, 25-76. · Zbl 1348.76117
[121] Liu, W., Jun, S. and Zhang, Y. [1995] “ Reproducing kernel particle methods,” Int. J. Numer. Methods Fluids20, 1081-1106. · Zbl 0881.76072
[122] Liu, W. K., Chen, Y., Chang, C. T. and Belytschko, T. [1996] “ Advances in multiple scale kernel particle methods,” Comput. Mech.18, 73-111. · Zbl 0868.73091
[123] Liu, W. K., Hao, W. and Chen, Y. [1997] “ Multiresolution reproducing kernel particle methods,” Comput. Mech.20, 295-309. · Zbl 0893.73078
[124] Loukopoulos, V. C., Bourantas, G. C., Skouras, E. D. and Nikiforidis, G. C. [2011] “ Localized meshless point collocation method for time-dependent magnetohydrodynamics flow through pipes under a variety of wall conductivity conditions,” Comput. Mech.47, 137-159. · Zbl 1398.76237
[125] Lu, Y. Y., Belytschko, T. and Gu, L. [1994] “ A new implementation of the element free Galerkin method,” Comput. Methods Appl. Mech. Eng.113, 397-414. · Zbl 0847.73064
[126] Melenk, J. M., Babuška, I. and Babuska, I. [1996] “ The partition of unity finite element method: Basic theory and applications,” Comput. Methods Appl. Mech. Eng.139, 289-314. · Zbl 0881.65099
[127] Miao, C., Wei, Y. and Yan, X. [2015] “ Two collinear square-hole cracks in an infinite plate in tension,” Theor. Appl. Fract. Mech.75, 32-38.
[128] Moës, N., Dolbow, J. and Belytschko, T. [1999] “ A finite element method for crack growth without remeshing,” Int. J. Numer. Methods Eng.46, 131-150. · Zbl 0955.74066
[129] Moosavi, M. R., Delfanian, F. and Khelil, A. [2012] “ Performance of orthogonal meshless finite volume method applied to elastodynamic crack problems,” Thin-Walled Struct.53, 156-160.
[130] Mukherjee, Y. X. and Mukherjee, S. [1997] “ On boundary conditions in the element-free Galerkin method,” Comput. Mech.19, 264-270. · Zbl 0884.65105
[131] Muthu, N., Falzon, B. G., Maiti, S. K. and Khoddam, S. [2014] “ Modified crack closure integral technique for extraction of SIFs in meshfree methods,” Finite Elem. Anal. Des.78, 25-39.
[132] Namakian, R., Shodja, H. M. and Mashayekhi, M. [2014] “ Fully enriched weight functions in meshfree methods for the analysis of linear elastic fracture mechanics problems,” Eng. Anal. Bound. Elem.43, 1-18. · Zbl 1297.74125
[133] Nasri, K., Abbadi, M. and Zenasni, M. [2014a] “ Double crack growth analysis in the presence of a bi-material interface using XFEM and FEM modeling,” Eng. Fract. Mech.132, 189-199.
[134] Nasri, K., Abbadi, M., Zenasni, M. and Azari, Z. [2014b] “ Numerical and experimental study of crack behavior at the zinc/TRIP steel 800 interface,” Comput. Mater. Sci.82, 172-177.
[135] Nayroles, B., Touzot, G. and Villon, P. [1992] “ Computational Mechanics Generalizing the finite element method? Diffuse approximation and diffuse elements,” Comput. Mech.10, 307-318. · Zbl 0764.65068
[136] Netuzhylov, H. [2008] “ Enforcement of boundary conditions in meshfree methods using interpolating moving least squares,” Eng. Anal. Bound. Elem.32, 512-516. · Zbl 1244.65190
[137] Ng, T. Y., Li, H. and Cheng, J. [2003] “ A novel true meshless numerical technique (hM-DOR method) for the deformation control of circular plates integrated with piezoelectric sensors/actuators,” Smart. Mater. Struct.12, 955-961.
[138] Nguyen, N. T., Bui, T. Q., Zhang, C. and Truong, T. T. [2014] “ Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method,” Eng. Anal. Bound. Elem.44, 87-97. · Zbl 1297.74108
[139] Nguyen, V. P., Anitescu, C., Bordas, S. P. A. and Rabczuk, T. [2015] “ Isogeometric analysis: An overview and computer implementation aspects,” Math. Comput. Simul.117, 89-116. · Zbl 07313396
[140] Nguyen, V. P., Rabczuk, T., Bordas, S. and Duflot, M. [2008] “ Meshless methods: A review and computer implementation aspects,” Math. Comput. Simul.79, 763-813. · Zbl 1152.74055
[141] Nusier, S. Q. and Newaz, G. M. [1998] “ Analysis of interfacial cracks in a TBC/superalloy system under thermomechanical loading,” J. Eng. Gas Turbines Power-Trans. ASME120, 813-819.
[142] Ohs, R. R. and Aluru, N. R. [2001] “ Meshless analysis of piezoelectric devices,” Comput. Mech.27, 23-36. · Zbl 1005.74078
[143] Onate, E. and Idelsohn, S. [1998] “ A mesh-free finite point method for advective-diffusive transport and fluid flow problems,” Comput. Mech.21, 283-292. · Zbl 0919.76072
[144] Organ, D., Fleming, M., Terry, T. and Belytschko, T. [1996] “ Continuous meshless approximations for nonconvex bodies by diffraction and transparency,” Comput. Mech.18, 225-235. · Zbl 0864.73076
[145] Pan, X. F., Zhang, X. and Lu, M. W. [2005] “ Meshless Galerkin least-squares method,” Comput. Mech.35, 182-189. · Zbl 1143.74390
[146] Pant, M. and Bhattacharya, S. [2016] “ Fatigue crack growth analysis of functionally graded materials by EFGM and XFEM,” Int. J. Comput. Methods14, 1750004. · Zbl 1404.74152
[147] Pant, M. and Sharma, K. [2014] “ A comparative study of modeling material discontinuity using element free Galerkin method,” Procedia Eng.86, 758-766.
[148] Pant, M., Singh, I. V. and Mishra, B. K. [2010] “ Numerical simulation of thermo-elastic fracture problems using element free Galerkin method,” Int. J. Mech. Sci.52, 1745-1755.
[149] Pant, M., Singh, I. V. and Mishra, B. K. [2011a] “ Evaluation of mixed mode stress intensity factors for interface cracks using EFGM,” Appl. Math. Model.35, 3443-3459. · Zbl 1221.74074
[150] Pant, M., Singh, I. V. and Mishra, B. K. [2011b] “ A numerical study of crack interactions under thermo-mechanical load using EFGM,” J. Mech. Sci. Technol.25, 403-413.
[151] Pant, M., Singh, I. V. and Mishra, B. K. [2013] “ A novel enrichment criterion for modeling kinked cracks using element free Galerkin method,” Int. J. Mech. Sci.68, 140-149.
[152] Paola, M. Di, Pirrotta, A. and Santoro, R. [2011] “ De Saint-Venant flexure-torsion problem handled by line element-less method (LEM),” Acta Mech.118, 101-118. · Zbl 1398.74459
[153] Pathak, H., Burela, R. G., Singh, A. and VirSingh, I. [2015] “ Thermo-elastic failure simulation of 3-D orthotropic composites by XFEM,” AIP Conference Proceedings, pp. 360006-1-360006-5.
[154] Pathak, H., Singh, A. and Singh, I. V. [2012] “ Numerical simulation of bi-material interfacial cracks using EFGM and XFEM,” Int. J. Mech. Mater. Des.8, 9-36.
[155] Pathak, H., Singh, A. and Singh, I. V. [2014] “ Fatigue crack growth simulations of homogeneous and bi-material interfacial cracks using element free Galerkin method,” Appl. Math. Model.38, 3093-3123. · Zbl 1449.74191
[156] Peng, B., Li, Z. and Feng, M. [2015] “ The mode I crack-inclusion interaction in orthotropic medium,” Eng. Fract. Mech.136, 185-194.
[157] Peng, L. X., Kitipornchai, S. and L, K. M. [2007] “ Free vibration analysis of folded plate structures by the FSDT mesh-free method,” Comput. Mech.39, 799-814. · Zbl 1178.74184
[158] Quak, W., van den Boogaard, A. H., Gonzalez, D. and Cueto, E. [2011] “ A comparative study on the performance of meshless approximations and their integration,” Comput. Mech.48, 121-137. · Zbl 1398.74473
[159] Rabczuk, T. and Belytschko, T. [2004] “ Cracking particles: A simplified meshfree method for arbitrary evolving cracks,” Int. J. Numer. Methods Eng.61, 2316-2343. · Zbl 1075.74703
[160] Rabczuk, T., Bordas, S. and Zi, G. [2007] “ A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics,” Comput. Mech.40, 473-495. · Zbl 1161.74054
[161] Rabczuk, T. and Zi, G. [2007] “ A Meshfree Method based on the Local Partition of Unity for Cohesive Cracks,” Comput. Mech.39, 743-760. · Zbl 1161.74055
[162] Rabczuk, T., Zi, G., Bordas, S. and Nguyen-Xuan, H. [2010] “ A simple and robust three-dimensional cracking-particle method without enrichment,” Comput. Methods Appl. Mech. Eng.199, 2437-2455. · Zbl 1231.74493
[163] Rajesh, K. N. and Rao, B. N. [2010] “ Two-dimensional analysis of anisotropic crack problems using coupled meshless and fractal finite element method,” Int. J. Fract.164, 285-318. · Zbl 1273.74477
[164] Raju, I. S., Phillips, D. R. and Krishnamurthy, T. [2004] “ A radial basis function approach in the meshless local Petrov-Galerkin method for Euler-Bernoulli beam problems,” Comput. Mech.34, 464-474. · Zbl 1109.74375
[165] Rao, B. N. and Kuna, M. [2008] “ Interaction integrals for fracture analysis of functionally graded piezoelectric materials,” Int. J. Solids Struct.45, 5237-5257. · Zbl 1209.74037
[166] Rao, B. N. and Rahman, S. [2002] “ Probabilistic fracture mechanics by Galerkin meshless methods — Part II: Reliability analysis,” Comput. Mech.28, 365-374. · Zbl 1074.74656
[167] Rao, B. N. and Rahman, S. [2001] “ A coupled meshless-finite element method for fracture analysis of cracks,” Int. J. Press Vessel Pip.78, 647-657.
[168] Rao, B. N. and Rahman, S. [2000] “ An efficient meshless method for fracture analysis of cracks,” Comput. Mech.26, 398-408. · Zbl 0986.74078
[169] Rao, B. N. and Rahman, S. [2003] “ Mesh-free analysis of cracks in isotropic functionally graded materials,” Eng. Fract. Mech.70, 1-27.
[170] Raveendra, S. T. and Banerjee, P. K. [1991] “ Computation of stress intensity factors for interfacial cracks,” Eng. Fract. Mech.40, 89-103.
[171] Reddy, R. M. and Rao, B. N. [2008] “ Continuum shape sensitivity analysis of mixed-mode fracture using fractal finite element method,” Eng. Fract. Mech.75, 2860-2906.
[172] Ren, H., Pei, K. and Wang, L. [2014] “ Error analysis for moving least squares approximation in 2D space,” Appl. Math. Comput.238, 527-546. · Zbl 1337.65157
[173] Rossi, R. and Alves, M. K. [2006] “ On the Analysis of an EFG Method Under Large Deformations and Volumetric Locking,” Comput. Mech.39, 381-399. · Zbl 1178.74185
[174] Sadeghirad, A., Mahmoudzadeh, I., Rahimian, M. and Vaziri, A. [2009] “ A numerical approach based on the meshless collocation method in elastodynamics,” Acta Mech. Sin.25, 857-870. · Zbl 1269.74210
[175] Saigal, S. and Barry, W. [2000] “ A slices based Element Free Galerkin formulation,” Comput. Mech.25, 220-229. · Zbl 0969.74078
[176] Sellountos, E. J. and Polyzos, D. [2005] “ A meshless local boundary integral equation method for solving transient elastodynamic problems,” Comput. Mech.35, 265-276. · Zbl 1109.74369
[177] Sharma, K., Bhasin, V. and Singh, I. V. [2014a] “ Simulation of bi-metallic Interfacial Cracks Using Element Free Galerkin Method,” Proc. Eng.86, 685-692.
[178] Sharma, K., Bhasin, V. and Singh, I. V. [2012] “ Parameter and Interaction Study of Edge Crack Problem Using Meshfree Method,” Int. J. Model Simul., Sci. Comput.3, 1250016-1-1250016-19.
[179] Sharma, K., Singh, I. V., Mishra, B. K. and Bhasin, V. [2014b] “ Numerical Modeling of Part-through Cracks in Pipe and Pipe Bend Using XFEM,” Proc. Mater. Sci.6, 72-79.
[180] Sharma, K., Singh, I. V., Mishra, B. K. and Shedbale, A. S. [2013] “ The Effect of Inhomogeneities on an Edge Crack: A Numerical Study using XFEM,” Int. J. Comput. Methods Eng. Sci. Mech.14, 505-523.
[181] Shedbale, A. S., Singh, I. V. and Mishra, B. K. [2013] “ Nonlinear Simulation of an Embedded Crack in the Presence of Holes and Inclusions by {XFEM},” Proc. Eng.64, 642-651.
[182] Shepard, D. [1968] “ A two-dimensional interpolation function for irregularly-spaced data,” 23rd ACM Natl. Conf.517-524.
[183] Shi, J., Ma, W. and Li, N. [2013] “ Extended meshless method based on partition of unity for solving multiple crack problems,” Meccanica48, 2263-2270. · Zbl 1293.74427
[184] Shields, E. [2001] “ Fracture prediction of hole patterns with multiple cracks using the finite element method,” Int. J. Fatigue23, 13-20.
[185] Simpson, R. and Trevelyan, J. [2011] “ A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics,” Comput. Methods Appl. Mech. Eng.200, 1-10. · Zbl 1225.74117
[186] Singh, A., Pathak, H. and Singh, I. V. [2014] “ Crack Interaction Study under Thermo-Mechanical Loading by XFEM.” In Multi-physics Modeling of Solids an International Colloquium, pp. 6-8.
[187] Singh, I. V., Mishra, B. K. and Pant, M. [2011] “ An efficient partial domain enriched element free Galerkin method criterion for cracks in nonconvex domains,” Int. J. Model Simul. Sci. Comput.2, 317-336.
[188] Singh, I. V., Mishra, B. K. and Pant, M. [2010a] “ An enrichment based new criterion for the simulation of multiple interacting cracks using element free Galerkin method,” Int. J. Fract.167, 157-171. · Zbl 1283.74099
[189] Singh, I. V., Mishra, B. K. and Pant, M. [2010b] “ A modified intrinsic enriched element free Galerkin method for multiple cracks simulation,” Mater. Des.31, 628-632.
[190] Singh, I. V., Tanaka, M. and Endo, M. [2007] “ Thermal analysis of CNT-based nano-composites by element free Galerkin method,” Comput. Mech.39, 719-728. · Zbl 1163.74015
[191] Sladek, J. and Sladek, V. [2003] “ A meshless method for large deflection of plates,” Comput. Mech.30, 155-163. · Zbl 1128.74345
[192] Sladek, J., Sladek, V., Solek, P. and Zhang, C. [2010] “ Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the MLPG,” Int. J. Solids Struct.47, 1381-1391. · Zbl 1193.74171
[193] Sladek, J., Sladek, V., Wünsche, M. and Zhang, C. [2012] “ Analysis of an interface crack between two dissimilar piezoelectric solids,” Eng. Fract. Mech.89, 114-127.
[194] Sladek, J., Sladek, V., Zhang, C. and Schanz, M. [2006] “ Meshless local Petrov-Galerkin method for continuously nonhomogeneous linear viscoelastic solids,” Comput. Mech.37, 279-289. · Zbl 1103.74058
[195] Sladek, V., Zhu, T., Atluri, S. N. and Sladek, J. [2000] “ The local boundary integral equation (LBIE) and it’s meshless implementation for linear elasticity,” Comput. Mech.25, 180-198. · Zbl 1020.74048
[196] Sladek, J. S. V., Hellmich, C. and Eberhardsteiner, J. [2007] “ Heat conduction analysis of 3-D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method,” Comput. Mech.39, 323-333. · Zbl 1169.80001
[197] Soric, J. and Jarak, T. [2010] “ Mixed meshless formulation for analysis of shell-like structures,” Comput. Methods Appl. Mech. Eng.199, 1153-1164. · Zbl 1227.74115
[198] Stolarska, M., Chopp, D. L., Mos, N. and Belytschko, T. [2001] “ Modeling crack growth by level sets in the extended finite element method,” Int. J. Numer. Methods Eng.51, 943-960. · Zbl 1022.74049
[199] Sukumar, N., Moës, N., Moran, B. and Belytschko, T. [2000] “ Extended finite element method for three-dimensional crack modeling,” Int. J. Numer. Methods Eng.48, 1549-1570. · Zbl 0963.74067
[200] Sukumar, N., Moran, B., Black, T. and Belytschko, T. [1997] “ An element-free Galerkin method for three-dimensional fracture mechanics,” Comput. Mech.20, 170-175. · Zbl 0888.73066
[201] Tan, F. and Jiao, Y.-Y. [2017] “ The combination of the boundary element method and the numerical manifold method for potential problems,” Eng. Anal. Bound. Elem.74, 19-23. · Zbl 1403.65230
[202] Tartakovsky, A. M. and Meakin, P. [2006] “ Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics,” Adv. Water Res.29, 1464-1478.
[203] Tsay, R.-J., Chiou, Y.-J. and Chuang, W. L. [1999] “ Crack growth prediction by manifold method,” J. Eng. Mech.125, 884-890.
[204] Tsukanov, I., Shapiro, V. and Zhang, S. [2003] “ A meshfree method for incompressible fluid dynamics problems,” Int. J. Numer. Methods Eng.58, 127-158. · Zbl 1032.76658
[205] Vavourakis, V. [2009] “ A meshless local boundary integral equation method for two-dimensional steady elliptic problems,” Comput. Mech.44, 777-790. · Zbl 1206.74023
[206] Ventura, G., Budyn, E. and Belytschko, T. [2003] “ Vector level sets for description of propagating cracks in finite elements,” Int. J. Numer. Methods Eng.58, 1571-1592. · Zbl 1032.74687
[207] Ventura, G., Xu, J. X. and Belytschko, T. [2002] “ A vector level set method and new discontinuity approximations for crack growth by EFG,” Int. J. Numer. Methods Eng.54, 923-944. · Zbl 1034.74053
[208] Wan, D., Wing, K. and Liu, K. [2007] “ Meshfree point collocation method with intrinsic enrichment for interface problems,” Comput. Mech.40, 1037-1052. · Zbl 1161.74053
[209] Wang, D. and Chen, J. [2006] “ A locking-free meshfree curved beam formulation with the stabilized conforming nodal mesh,” Comput. Mech.39, 83-90. · Zbl 1168.74472
[210] Wang, D. and Lin, Z. [2010] “ Free vibration analysis of thin plates using Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration,” Comput. Mech.46, 703-719. · Zbl 1398.74157
[211] Wang, Q. X., Hua, L. and Lam, K. Y. [2007] “ Analysis of microelectromechanical systems (MEMS) devices by the meshless point weighted least-squares method,” Comput. Mech.40, 1-11. · Zbl 1175.74060
[212] Wang, Y., Chen, S. and Wu, C. [2010] “ A meshless collocation method based on the differential reproducing kernel interpolation,” Comput. Mech.45, 585-606. · Zbl 1398.74479
[213] Wen, P. H. and Aliabadi, M. H. [2011] “ A variational approach for evaluation of stress intensity factors using the element free Galerkin method,” Int. J. Solids Struct.48, 1171-1179. · Zbl 1236.74093
[214] Wen, P. H. and Aliabadi, M. H. [2009] “ Evaluation of mixed-mode stress intensity factors by the mesh-free Galerkin method: Static and dynamic,” J. Strain Anal. Eng. Des.44, 273-286.
[215] Wu, Y. L. and Liu, G. R. [2003] “ A meshfree formulation of local radial point interpolation method (LRPIM) for incompressible flow simulation,” Comput. Mech.30, 355-365. · Zbl 1038.76542
[216] Xiong, S., Rodrigues, J. M. C. and Martins, P. A. F. [2007] “ On background cells during the analysis of bulk forming processes by the reproducing Kernel particle method,” Comput. Mech.40, 233-247. · Zbl 1178.74187
[217] Xu, J. and Belytschko, T. [2005] “ Discontinuous radial basis function approximations for meshfree methods,” Meshfree Methods Partial Differ Equations II43, 231-243. · Zbl 1160.74428
[218] Xu, Y. and Saigal, S. [1998] “ Element free galerkin study of steady quasi-static crack growth in plane strain tension in elastic-plastic materials,” Comput. Mech.22, 255-265. · Zbl 0958.74074
[219] Yagawa, G. and Furukawa, T. [2000] “ Recent developments of free mesh method,” Int. J. Numer. Methods Eng.47, 1419-1443. · Zbl 0955.74080
[220] Yagawa, G. and Yamada, T. [1996] “ Free mesh method: A new meshless finite element method,” Comput. Mech.18, 383-386. · Zbl 0894.73182
[221] Yan, X. [2004] “ Analysis for a crack emanating from a corner of a square hole in an infinite plate using the hybrid displacement discontinuity method,” Appl. Math. Model.28, 835-847. · Zbl 1147.74406
[222] Yu, T. T. and Liu, P. [2011] “ Improved implementation of the extended finite element method for stress analysis around cracks,” Arch. Civ. Mech. Eng.11, 787-805.
[223] Zhang, H. H. and Ma, G. W. [2014] “ Fracture modeling of isotropic functionally graded materials by the numerical manifold method,” Eng. Anal. Bound. Elem.38, 61-71. · Zbl 1287.74039
[224] Zhang, J. and Li, X. [2011] “ A mixed finite element and mesh-free method using linear complementarity theory for gradient plasticity,” Comput. Mech.47, 171-185. · Zbl 1398.74483
[225] Zhang, X., Song, K. Z., Lu, M. W. and Liu, X. [2000] “ Meshless methods based on collocation with radial basis functions,” Comput. Mech.26, 333-343. · Zbl 0986.74079
[226] Zhang, Z., Liew, K. M., Cheng, Y. and Lee, Y. Y. [2008] “ Analyzing 2D fracture problems with the improved element-free Galerkin method,” Eng. Anal. Bound. Elem.32, 241-250. · Zbl 1244.74240
[227] Zhang, Z., Zhao, P. and Liew, K. M. [2009] “ Analyzing three-dimensional potential problems with the improved element-free Galerkin method,” Comput. Mech.44, 273-284. · Zbl 1171.65083
[228] Zhao, X., Lee, Y. Y. and Liew, K. M. [2009] “ Mechanical and thermal buckling analysis of functionally graded plates,” Compos. Struct.90, 161-171.
[229] Zhao, X. and Liew, K. M. [2011] “ Free vibration analysis of functionally graded conical shell panels by a meshless method,” Compos. Struct.93, 649-664.
[230] Zhu, T. and Atluri, S. N. [1998] “ A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method,” Comput. Mech.21, 211-222. · Zbl 0947.74080
[231] Zhu, T., Zhang, J. and Atluri, S. N. [1998] “ A meshless local boundary integral equation (LBIE) method for solving nonlinear problems,” Comput. Mech.22, 174-186. · Zbl 0924.65105
[232] Zi, G., Rabczuk, T. and Wall, W. [2007] “ Extended meshfree methods without branch enrichment for cohesive cracks,” Comput. Mech.40, 367-382. · Zbl 1162.74053
[233] Živojinović, D., Durdević, A. and Grbović, A. [2014] “ Numerical modeling of crack propagation in friction stir welded joint made of aluminium alloy,” Procedia Mater. Sci.3, 1330-1335.
[234] Zou, W., Zhou, X., Zhang, Q. and Li, Q. [2007] “ A truly meshless method based on partition of unity quadrature for shape optimization of continua,” Comput. Mech.39, 357-365. · Zbl 1178.74189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.