×

Infinite wall in the fractional quantum mechanics. (English) Zbl 1461.81030

Summary: The space-fractional Schrödinger equation for a local potential is difficult to solve because the fractional Riesz operator in it is nonlocal. In fractional quantum mechanics, the infinite wall is a basic problem and has not been solved yet. In this paper, we consider a free particle in an infinite wall region. Making use of the Lévy path integral method, we derive the Lévy path integral amplitude of the particle and take advantage of it to get the solution of the fractional Schrödinger equation for an infinite wall. Then, the infinite wall potential with a delta-function perturbation is also studied. According to Fox’s \(H\)-function, we get an equation of bound state energies of a free particle moving in an infinite wall region perturbed by the \(\delta \)-function for two situations, \(E < 0\) and \(E > 0\). We give a transcendental equation that determines energy levels when \(E < 0\) and prove that there is no bound states when \(E > 0\). The asymptotic behaviors of the center of the delta function approaching to the origin and the infinite are also shown. The results of this paper include special cases in standard quantum mechanics.
©2021 American Institute of Physics

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35R11 Fractional partial differential equations
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
81S40 Path integrals in quantum mechanics
46F10 Operations with distributions and generalized functions
12F20 Transcendental field extensions
35P05 General topics in linear spectral theory for PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hilfer, R., Fractional diffusion based on Riemann-Liouville fractional derivatives, J. Phys. Chem. B, 104, 16, 3914-3917 (2000)
[2] Mainardi, F.; Luchko, Y.; Pagnini, G., The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal., 4, 2, 153-192 (2001) · Zbl 1054.35156
[3] Glöckle, W. G.; Nonnenmacher, T. F., A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68, 1, 46-53 (1995)
[4] Köpf, M.; Corinth, C.; Haferkamp, O., Anomalous diffusion behavior of water in biological tissues, Biophys. J., 70, 6, 2950-2958 (1996)
[5] Tarasov, E., Quantum Mechanics of Non-Hamiltonian and Dissipative Systems (2008), Elsevier · Zbl 1213.81004
[6] Iomin, A., Fractional-time quantum dynamics, Phys. Rev. E, 80, 022103 (2009)
[7] Wu, J. N.; Huang, C. H.; Cheng, S. C., Spontaneous emission from a two-level atom in anisotropic one-hand photonic crystals: A fractional calculus approach, Phys. Rev. A, 81, 023827 (2010)
[8] Iomin, A.; Sandev, T., Lévy transport in slab geometry of inhomogeneous media, Math. Model. Nat. Phenom., 11, 3, 51-62 (2016) · Zbl 1390.60289
[9] Feynamn, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals (1965), McGraw-Hill: McGraw-Hill, New York
[10] Luchko, Y.; Gorenflo, R., An operational method for solving fractional differential equations with the caputo derivatives, Acta Math., 24, 2, 207-233 (1999) · Zbl 0931.44003
[11] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[12] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 4-6, 298-305 (2000) · Zbl 0948.81595
[13] Laskin, N., Fractional quantum mechanics, Phys. Rev. E, 62, 3, 3135-3145 (2000)
[14] Laskin, N., Fractional Schrödinger equation, Phys. Rev. E, 66, 5, 056108 (2002)
[15] Laskin, N., Fractals and quantum mechanics, Chaos, 10, 4, 780-790 (2000) · Zbl 1071.81513
[16] Laskin, N., Lévy flights over quantum paths, Commun. Nonlinear Sci. Numer. Simul., 12, 2, 2-18 (2007) · Zbl 1101.81079
[17] Naber, M., Time fractional Schrödinger equation, J. Math. Phys., 45, 8, 3339 (2004) · Zbl 1071.81035
[18] Wang, S.; Xu, M., Generalized fractional Schrödinger equation with space-time fractional derivatives, J. Math. Phys., 48, 043502 (2007) · Zbl 1137.81328
[19] Dong, J.; Xu, M., Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 344, 2, 1005-1017 (2008) · Zbl 1140.81357
[20] Laskin, N., Time fractional quantum mechanics, Chaos, Solitons Fractals, 102, 16-28 (2017) · Zbl 1374.81059
[21] Li, Y.; Zhao, D.; Wang, Q., Ground state solution and nodal solution for fractional nonlinear Schrödinger equation with indefinite potential, J. Math. Phys., 60, 4, 041501 (2019) · Zbl 1414.35210
[22] Le, X. T., The Nehari manifold for a class of Schrödinger equation involving fractional p-Laplacian and sign-changing logarithmic nonlinearity, J. Math. Phys., 60, 111505 (2019) · Zbl 1431.35184
[23] Górka, P.; Prado, H.; Pons, D. J., The asymptotic behavior of the time fractional Schrödinger equation on Hilbert space, J. Math. Phys., 61, 3, 031501 (2020) · Zbl 1439.81038
[24] Guo, X.; Xu, M., Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47, 8, 082104 (2006) · Zbl 1112.81028
[25] Dong, J.; Xu, M., Some solutions to the space fractional Schrödinger equation using momentum representation method, J. Math. Phys., 48, 072105 (2007) · Zbl 1144.81341
[26] Jiang, X. Y.; Xu, M. Y., Some applications of fractional quantum mechanics, 688-691 (2008), IEEE
[27] Oliveira, E. C.; Costa, F. S.; Vaz, J. J., The fractional Schrödinger equation for delta potentials, J. Math. Phys., 51, 123517 (2010) · Zbl 1314.81082
[28] Jeng, M.; Xu, S.-L.-Y.; Hawkins, E.; Schwarz, J. M., On the nonlocality of the fractional Schrödinger equation, J. Math. Phys., 51, 062102 (2010) · Zbl 1311.81114
[29] Bayin, S. S., On the consistency of the solutions of the space fractional Schrödinger equation, J. Math. Phys., 53, 042105 (2012) · Zbl 1275.81026
[30] Hawkins, E.; Schwarz, J. M., Comment on: “The consistency of solutions of the space fractional Schrödinger equation” [J. Math. Phys. 53, 042105 (2012)], J. Math. Phys., 54, 014101 (2013) · Zbl 1280.81040
[31] Kleinert, H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (2009), World Scientific Publishing Company: World Scientific Publishing Company, Singapore · Zbl 1169.81001
[32] Bernido, C. C.; Carpio-Bernido, M. V., Path integrals for boundaries and topological constrains: A white noise functional approach, J. Math. Phys., 43, 4, 1728-1736 (2002) · Zbl 1059.81108
[33] Dong, J. P., Lévy path integral approach to the solution of the fractional Schrödinger equation with infinite square well (2013)
[34] Dong, J.; Geng, H., Lévy path integrals of particle on circle and some applications, J. Math. Phys., 59, 112103 (2018) · Zbl 1404.81091
[35] Janev, R. K.; Marić, Z., Perturbation of the spectrum of three-dimensional Haemonic oscillator by δ-potential, Phys. Lett. A, 46, 5, 313 (1974)
[36] Grosche, C., Path integrals for potential problems with δ-function perturbation, J. Phys. A: Math. Gen., 23, 5205 (1974) · Zbl 0715.58048
[37] Nayga, M. M.; Esguerra, J. P., Green’s functions and energy eigenvalues for delta-perturbed space-fractional quantum systems, J. Math. Phys., 57, 022103 (2016) · Zbl 1332.81047
[38] Mathai, A. M.; Saxena, R. K.; Haubold, H. J., The H-Function: Theory and Applications (2009), Springer: Springer, New York
[39] Kilbals, A. A.; Saigo, M., H-Transforms: Theory and Applications (2004), CRC: CRC, Florida
[40] Pairs, R. B., Asymptotics and Mellin-Barnes Integrals (2001), Cambridge University Press: Cambridge University Press, Cambridge
[41] Fox, C., The G and H-function as symmetrical Fourier kernels, Trans. Am. Math. Soc., 98, 239 (1961)
[42] Braaksma, B. L. J., Asymptotic expansions and analytic continuations for a class of Barnes-integrals, Compos. Math., 15, 239 (1964) · Zbl 0129.28604
[43] Prudnikov, A. P.; Brychkov, Y. A.; Marichev, O. I., More Special Functions (1990), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers, London, New York · Zbl 0967.00503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.