×

Persistence versus extinction for two competing species under a climate change. (English) Zbl 1416.92147

Summary: This paper considers effects of a climate-induced range shift on outcomes of two competitive species, which is modeled by a reaction-diffusion system with the increasing growth rates of species along a shifting habitat gradient. Analytical conditions are established for the coexistence or competitive exclusion of two-competitors under the climate change, which present the control strategies to maintain the persistence of species.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D.A. Andow, P.M. Kareiva, S.A. Levin, A. Okubo, Spread of invading organisms, Landscape Ecol., 4(2):177-188, 1990.
[2] H. Berestycki, O. Diekmann, C.J. Nagelkerke, P.A. Zegeling, Can a species keep pace with a shifting climate?, Bull. Math. Biol., 71(2):399-429, 2009. · Zbl 1169.92043
[3] W.F. Fagan, R.S. Cantrell, C. Cosner, S. Ramakrishnan, Interspecific variation in critical patch size and gap-crossing ability as determinants of geographic range size distributions, Am. Nat., 173(3):363-375, 2009.
[4] W.F. Fagan, M.A. Lewis, M.G. Neubert, P. van Den Driessche, Invasion theory and biological control, Ecology Letters, 5(1):148-157, 2002.
[5] J. Huang, W. Shen, Speeds of spread and propagation for KPP models in time almost and space periodic media, SIAM J. Appl. Dyn. Syst., 8(3):790-821, 2009. · Zbl 1172.35423
[6] W. Huang,Problem on minimum wave speed for a Lotka-Volterra reaction – diffusion competition model, J. Dyn. Differ. Equations, 22(2):285-297, 2010. · Zbl 1201.34068
[7] S.T. Jackson, D.F. Sax, Balancing biodiversity in a changing environment: Extinction debt, immigration credit and species turnover, Trends Ecol. Evol., 25(3):153-160, 2010.
[8] Y. Jin, M.A. Lewis, Seasonal influences on population spread and persistence in streams: Spreading speeds, J. Math. Biol., 65(3):403-439, 2012. · Zbl 1258.37073
[9] E. Kintisch, Impacts research seen as next climate frontier, Science, 322(5899):182-183, 2008.
[10] M.A. Lewis, B. Li, H.F. Weinberger, Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45(3):219-233, 2002. · Zbl 1032.92031
[11] B. Li, S. Bewick, J. Shang, W.F. Fagan, Persistence and spread of a species with a shifting habitat edge, SIAM J. Appl. Math., 74(5):1397-1417, 2014. · Zbl 1345.92120
[12] B. Li, W.F. Fagan, G. Otto, C. Wang, Spreading speeds and traveling wave solutions in a competitive reaction – diffusion model for species persistence, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms, 19(10):3267-3281, 2014. · Zbl 1304.35707
[13] F. Lutscher, M.A. Lewis, E. McCauley, Effects of heterogeneity on spread and persistence in rivers, Bull. Math. Biol., 68(8):2129-2160, 2006. · Zbl 1296.92211
[14] F. Lutscher, R.M. Nisbet, E. Pachepsky, Population persistence in the face of advection, Theor. Ecol., 3(4):271-284, 2010.
[15] C. Moritz, J.L Patton, C.J. Conroy, J.L. Parra, G.C. White, S.R. Beissinger, Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA, Science, 322(5899):261-264, 2008.
[16] E. Pachepsky, F. Lutscher, R. Nisbet, M.A. Lewis, Persistence, spread and the drift paradox, Theor. Popul. Biol., 67(1):61-73, 2005. · Zbl 1071.92043
[17] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992. · Zbl 0777.35001
[18] C. Parmesan, Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol. Evol. Syst., 37:637-669, 2006.
[19] C. Parmesan, G. Yohe, A globally coherent fingerprint of climate change impacts across natural systems, Nature, 421(6918):37-42, 2003. Nonlinear Anal. Model. Control, 22(3):285-302 302Z. Zhang et al.
[20] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[21] A.B. Potapov, M.A. Lewis, Climate and competition: the effect of moving range boundaries on habitat invasibility, Bull. Math. Biol., 66(5):975-1008, 2004. · Zbl 1334.92454
[22] N. Shigesada, K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997.
[23] N. Shigesada, K. Kawasaki, E. Teramoto,Traveling periodic waves in heterogeneous environments, Theor. Popul. Biol., 30(1):143-160, 1986. · Zbl 0591.92026
[24] J. Smoller, Shock Waves and Reaction-DiffusionEquations, Springer-Verlag, New York, 1994. · Zbl 0807.35002
[25] D.C. Speirs, W.S.C. Gurney,Population persistence in rivers and estuaries,Ecology, 82(5):1219-1237, 2001.
[26] G.R. Walther, E. Post, P. Convey, A. Menzel, C. Parmesan, T.J.C. Beebee, J.M. Fromentin, O. Hoegh-Guldberg, F. Bairlein,Ecological responses to recent climate change,Nature, 416(6879):389-395, 2002.
[27] X. Wang, On the Cauchy problem for reaction – diffusion equations, Trans. Am. Math. Soc., 337(2):549-590, 1993. · Zbl 0815.35048
[28] H.F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13(3):353-396, 1982. · Zbl 0529.92010
[29] H.F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45(6):511-548, 2002. · Zbl 1058.92036
[30] R. Xu, M.A.J. Chaplain, F.A. Davidson, Travelling wave and convergence in stage-structured reaction – diffusion competitive models with nonlocal delays,Chaos Solitons Fractals, 30(4):974-992, 2006. · Zbl 1142.35477
[31] Q. Ye, Z. Li, M. Wang, Y. Wu, Introduction to Reaction-Diffusion Equations, Science Press, Beijing, 2011.
[32] Y. Zhou, M. Kot, Discrete-time growth-dispersal models with shifting species ranges, Theor. Ecol., 4(1):13-25, 2011.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.