×

Resolved energy budget of superstructures in Rayleigh-Bénard convection. (English) Zbl 1460.76435

Summary: Turbulent superstructures, i.e. large-scale flow structures in turbulent flows, play a crucial role in many geo- and astrophysical settings. In turbulent Rayleigh-Bénard convection, for example, horizontally extended coherent large-scale convection rolls emerge. Currently, a detailed understanding of the interplay of small-scale turbulent fluctuations and large-scale coherent structures is missing. Here, we investigate the resolved kinetic energy and temperature variance budgets by applying a filtering approach to direct numerical simulations of Rayleigh-Bénard convection at high aspect ratio. In particular, we focus on the energy transfer rate between large-scale flow structures and small-scale fluctuations. We show that the small scales primarily act as a dissipation for the superstructures. However, we find that the height-dependent energy transfer rate has a complex structure with distinct bulk and boundary layer features. Additionally, we observe that the heat transfer between scales mainly occurs close to the thermal boundary layer. Our results clarify the interplay of superstructures and turbulent fluctuations and may help to guide the development of an effective description of large-scale flow features in terms of reduced-order models.

MSC:

76F35 Convective turbulence
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ahlers, G., Grossmann, S. & Lohse, D.2009Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection. Rev. Mod. Phys.81, 503-537.
[2] Aluie, H. & Eyink, G. L.2009Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter. Phys. Fluids21 (11), 115108. · Zbl 1183.76195
[3] Atkinson, B. W. & Zhang, J. W.1996Mesoscale shallow convection in the atmosphere. Rev. Geophys.34 (4), 403-431.
[4] Ballouz, J. G. & Ouellette, N. T.2018Tensor geometry in the turbulent cascade. J. Fluid Mech.835, 1048-1064. · Zbl 1419.76235
[5] Bauer, C., von Kameke, A. & Wagner, C.2019Kinetic energy budget of the largest scales in turbulent pipe flow. Phys. Rev. Fluids4 (6), 064607.
[6] Bodenschatz, E., Pesch, W. & Ahlers, G.2000Recent developments in Rayleigh-Bénard convection. Annu. Rev. Fluid Mech.32 (1), 709-778. · Zbl 0988.76033
[7] Buzzicotti, M., Linkmann, M., Aluie, H., Biferale, L., Brasseur, J. & Meneveau, C.2018Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence. J. Turbul.19 (2), 167-197.
[8] Chillà, F. & Schumacher, J.2012New perspectives in turbulent Rayleigh-Bénard convection. Eur. Phys. J. E35 (7), 58.
[9] Ching, E. S. C.2014Statistics and Scaling in Turbulent Rayleigh-Bénard Convection, 1st edn. Springer. · Zbl 1280.76001
[10] Cimarelli, A. & De Angelis, E.2011Analysis of the Kolmogorov equation for filtered wall-turbulent flows. J. Fluid Mech.676, 376-395. · Zbl 1241.76260
[11] Cimarelli, A. & De Angelis, E.2012Anisotropic dynamics and sub-grid energy transfer in wall-turbulence. Phys. Fluids24 (1), 015102. · Zbl 1308.76150
[12] Cimarelli, A., De Angelis, E., Schlatter, P., Brethouwer, G., Talamelli, A. & Casciola, C. M.2015Sources and fluxes of scale energy in the overlap layer of wall turbulence. J. Fluid Mech.771, 407-423.
[13] Domaradzki, J. A., Liu, W., Härtel, C. & Kleiser, L.1994Energy transfer in numerically simulated wall-bounded turbulent flows. Phys. Fluids6 (4), 1583-1599. · Zbl 0830.76041
[14] Elperin, T., Golubev, I., Kleeorin, N. & Rogachevskii, I.2006aLarge-scale instabilities in a nonrotating turbulent convection. Phys. Fluids18 (12), 126601. · Zbl 1146.76375
[15] Elperin, T., Kleeorin, N., Rogachevskii, I. & Zilitinkevich, S.2002Formation of large-scale semiorganized structures in turbulent convection. Phys. Rev. E66 (6), 066305.
[16] Elperin, T., Kleeorin, N., Rogachevskii, I. & Zilitinkevich, S. S.2006bTangling turbulence and semi-organized structures in convective boundary layers. Boundary-Layer Meteorol.119 (3), 449-472.
[17] Emran, M. S. & Schumacher, J.2015Large-scale mean patterns in turbulent convection. J. Fluid Mech.776, 96-108.
[18] Eyink, G. L.1995Local energy flux and the refined similarity hypothesis. J. Stat. Phys.78 (1), 335-351. · Zbl 1102.76315
[19] Eyink, G. L.2007 Turbulence Theory, course notes, The Johns Hopkins University, 2007-2008. Available at: .
[20] Eyink, G. L. & Aluie, H.2009Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining. Phys. Fluids21 (11), 115107. · Zbl 1183.76195
[21] Faranda, D., Lembo, V., Iyer, M., Kuzzay, D., Chibbaro, S., Daviaud, F. & Dubrulle, B.2018Computation and characterization of local subfilter-scale energy transfers in atmospheric flows. J. Atmos. Sci.75 (7), 2175-2186.
[22] Fodor, K., Mellado, J. P. & Wilczek, M.2019On the role of large-scale updrafts and downdrafts in deviations from Monin-Obukhov similarity theory in free convection. Boundary-Layer Meteorol.172 (3), 371-396.
[23] Fonda, E., Pandey, A., Schumacher, J. & Sreenivasan, K. R.2019Deep learning in turbulent convection networks. Proc. Natl Acad. Sci.116 (18), 8667-8672. · Zbl 1431.76063
[24] Germano, M.1992Turbulence: the filtering approach. J. Fluid Mech.238, 325-336. · Zbl 0756.76034
[25] Getling, A. V.1998Rayleigh-Bénard Convection, . World Scientific. · Zbl 0910.76001
[26] Grossmann, S. & Lohse, D.2004Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes. Phys. Fluids16 (12), 4462-4472. · Zbl 1187.76190
[27] von Hardenberg, J., Parodi, A., Passoni, G., Provenzale, A. & Spiegel, E. A.2008Large-scale patterns in Rayleigh-Bénard convection. Phys. Lett. A372 (13), 2223-2229. · Zbl 1220.76037
[28] Hartlep, T., Tilgner, A. & Busse, F. H.2003Large scale structures in Rayleigh-Bénard convection at high Rayleigh numbers. Phys. Rev. Lett.91 (6), 064501. · Zbl 1083.76035
[29] Hartlep, T., Tilgner, A. & Busse, F. H.2005Transition to turbulent convection in a fluid layer heated from below at moderate aspect ratio. J. Fluid Mech.544, 309-322. · Zbl 1083.76035
[30] Ibbeken, G., Green, G. & Wilczek, M.2019Large-scale pattern formation in the presence of small-scale random advection. Phys. Rev. Lett.123, 114501.
[31] Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J. & Readings, C. J.1976Turbulence structure in the convective boundary layer. J. Atmos. Sci.33 (11), 2152-2169.
[32] Kimmel, S. J. & Domaradzki, J. A.2000Large eddy simulations of Rayleigh-Bénard convection using subgrid scale estimation model. Phys. Fluids12 (1), 169-184. · Zbl 1149.76435
[33] Krug, D., Lohse, D. & Stevens, R. J. A. M.2019 Coherence of temperature and velocity superstructures in turbulent Rayleigh-Bénard flow. J. Fluid Mech. (in press) . · Zbl 1460.76437
[34] Lohse, D. & Xia, K.-Q.2010Small-scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev. Fluid Mech.42 (1), 335-364. · Zbl 1345.76038
[35] Lomax, H., Pulliam, T. H. & Zingg, D. W.2001Fundamentals of computational fluid dynamics. In Scientific Computation, 1st edn. Springer. · Zbl 0970.76002
[36] Lülff, J., Wilczek, M. & Friedrich, R.2011Temperature statistics in turbulent Rayleigh-Bénard convection. New J. Phys.13 (1), 015002.
[37] Lülff, J., Wilczek, M., Stevens, R. J. A. M., Friedrich, R. & Lohse, D.2015Turbulent Rayleigh-Bénard convection described by projected dynamics in phase space. J. Fluid Mech.781, 276-297. · Zbl 1359.76138
[38] Manneville, P.1990Dissipative Structures and Weak Turbulence. Elsevier. · Zbl 0714.76001
[39] Marati, N., Casciola, C. M. & Piva, R.2004Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech.521, 191-215. · Zbl 1065.76103
[40] Mellado, J. P.2012Direct numerical simulation of free convection over a heated plate. J. Fluid Mech.712, 418-450. · Zbl 1275.76191
[41] Mellado, J. P. & Ansorge, C.2012Factorization of the Fourier transform of the pressure-Poisson equation using finite differences in colocated grids. Z. Angew. Math. Mech.92 (5), 380-392. · Zbl 1419.76483
[42] Mellado, J. P., van Heerwaarden, C. C. & Garcia, J. R.2016Near-surface effects of free atmosphere stratification in free convection. Boundary-Layer Meteorol.159 (1), 69-95.
[43] Morris, S. W., Bodenschatz, E., Cannell, D. S. & Ahlers, G.1993Spiral defect chaos in large aspect ratio Rayleigh-Bénard convection. Phys. Rev. Lett.71 (13), 2026-2029.
[44] Nordlund, Å., Stein, R. F. & Asplund, M.2009Solar surface convection. Living Rev. Sol. Phys.6 (1), 2.
[45] Pandey, A., Scheel, J. D. & Schumacher, J.2018Turbulent superstructures in Rayleigh-Bénard convection. Nat. Commun.9 (1), 2118.
[46] Parodi, A., von Hardenberg, J., Passoni, G., Provenzale, A. & Spiegel, E. A.2004Clustering of plumes in turbulent convection. Phys. Rev. Lett.92, 194503. · Zbl 1220.76037
[47] Petschel, K., Stellmach, S., Wilczek, M., Lülff, J. & Hansen, U.2013Dissipation layers in Rayleigh-Bénard convection: A unifying view. Phys. Rev. Lett.110 (11), 114502.
[48] Petschel, K., Stellmach, S., Wilczek, M., Lülff, J. & Hansen, U.2015Kinetic energy transport in Rayleigh-Bénard convection. J. Fluid Mech.773, 395-417.
[49] Pope, S. B.2000Turbulent Flows. Cambridge University Press. · Zbl 0966.76002
[50] Sagaut, P.2006Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer. · Zbl 1091.76001
[51] Scheel, J. D. & Schumacher, J.2014Local boundary layer scales in turbulent Rayleigh-Bénard convection. J. Fluid Mech.758, 344-373.
[52] Schumacher, J., Pandey, A., Yakhot, V. & Sreenivasan, K. R.2018Transition to turbulence scaling in Rayleigh-Bénard convection. Phys. Rev. E98 (3), 033120.
[53] Shishkina, O., Stevens, R. J. A. M., Grossmann, S. & Lohse, D.2010Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys.12 (7), 075022.
[54] Shishkina, O. & Wagner, C.2006Analysis of thermal dissipation rates in turbulent Rayleigh-Bénard convection. J. Fluid Mech.546, 51-60. · Zbl 1097.76035
[55] Shraiman, B. I. & Siggia, E. D.1990Heat transport in high-Rayleigh-number convection. Phys. Rev. A42 (6), 3650-3653.
[56] Siggia, E. D.1994High Rayleigh number convection. Annu. Rev. Fluid Mech.26 (1), 137-168. · Zbl 0800.76425
[57] Stevens, R. J. A. M., Blass, A., Zhu, X., Verzicco, R. & Lohse, D.2018Turbulent thermal superstructures in Rayleigh-Bénard convection. Phys. Rev. Fluids3 (4), 041501.
[58] Togni, R., Cimarelli, A. & De Angelis, E.2015Physical and scale-by-scale analysis of Rayleigh-Bénard convection. J. Fluid Mech.782, 380-404. · Zbl 1381.76329
[59] Togni, R., Cimarelli, A. & De Angelis, E.2017Towards an improved subgrid-scale model for thermally driven flows. In Progress in Turbulence VII (ed. Örlü, R., Talamelli, A., Oberlack, M. & Peinke, J.), pp. 141-145. Springer International.
[60] Togni, R., Cimarelli, A. & De Angelis, E.2019Resolved and subgrid dynamics of Rayleigh-Bénard convection. J. Fluid Mech.867, 906-933. · Zbl 1430.76433
[61] Valori, V., Innocenti, A., Dubrulle, B. & Chibbaro, S.2020Weak formulation and scaling properties of energy fluxes in three-dimensional numerical turbulent Rayleigh-Bénard convection. J. Fluid Mech.885, A14. · Zbl 1460.76443
[62] Verma, M. K.2018Physics of Buoyant Flows. World Scientific. · Zbl 1416.76004
[63] Verma, M. K., Kumar, A. & Pandey, A.2017Phenomenology of buoyancy-driven turbulence: recent results. New J. Phys.19 (2), 025012.
[64] Verzicco, R. & Camussi, R.2003Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech.477, 19-49. · Zbl 1063.76572
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.