×

Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: neutral modes. (English) Zbl 1351.35187

Summary: In this paper the study of asymptotic stability of standing waves for a model of Schrödinger equation with spatially concentrated nonlinearity in dimension three. The nonlinearity studied is a power nonlinearity concentrated at the point \(x=0\) obtained considering a contact (or \(\delta\)) interaction with strength \(\alpha\), which consists of a singular perturbation of the Laplacian described by a selfadjoint operator \(H_{\alpha}\), and letting the strength \(\alpha\) depend on the wavefunction in a prescribed way: \(i\dot u= H_\alpha u\), \(\alpha=\alpha(u)\). For power nonlinearities in the range \((\frac{1}{\sqrt 2},1)\) there exist orbitally stable standing waves \(\Phi_\omega\), and the linearization around them admits two imaginary eigenvalues (neutral modes, absent in the range \((0,\frac{1}{\sqrt 2})\) previously treated by the same authors) which in principle could correspond to non decaying states, so preventing asymptotic relaxation towards an equilibrium orbit. We prove that, in the range \((\frac{1}{\sqrt 2},\sigma^*)\) for a certain \(\sigma^* \in (\frac{1}{\sqrt{2}}, \frac{\sqrt{3} +1}{2 \sqrt{2}}]\), the dynamics near the orbit of a standing wave asymptotically relaxes in the following sense: consider an initial datum \(u(0)\), suitably near the standing wave \(\Phi_{\omega_0}, \) then the solution \(u(t)\) can be asymptotically decomposed as \[ u(t) = e^{i\omega_{\infty}t+ib_{1}\log(1 +\epsilon k_{\infty}t)+i\gamma_{\infty}} \Phi_{\omega_{\infty}}+U_t\ast\psi_{\infty}+r_{\infty},\quad\,\,\text{as}\,\, t \rightarrow +\infty, \] where \(\omega_{\infty}, k_{\infty}, \gamma_\infty > 0\), \(b_1 \in \mathbb{R}\), and \(\psi_{\infty}\) and \(r_{\infty} \in L^2(\mathbb{R}^3)\) , \(U(t)\) is the free Schrödinger group and \[ \|r_{\infty}\|_{L^{2}} = O(t^{-1/4})\quad\,\,\text{as}\,\, t \rightarrow +\infty\;. \] We stress the fact that in the present case and contrarily to the main results in the field, the admitted nonlinearity is \(L^2\)-subcritical.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q51 Soliton equations
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Adami, The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity,, Ann. I. H. Poincaré, 20, 477 (2003) · Zbl 1028.35137 · doi:10.1016/S0294-1449(02)00022-7
[2] R. Adami, Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity,, Ann. I. H. Poincaré, 21, 121 (2004) · Zbl 1042.35070 · doi:10.1016/j.anihpc.2003.01.002
[3] R. Adami, Stability and Symmetry-Breaking Bifurcation for the Ground States of a NLS with a \(\delta'\) Interaction,, Commun. Math. Phys., 318, 247 (2013) · Zbl 1260.35194 · doi:10.1007/s00220-012-1597-6
[4] R. Adami, Orbital and asymptotic stability for standing waves of a NLS equation with concentrated nonlinearity in dimension three,, J. Math. Phys., 54 (2013) · Zbl 1322.35122 · doi:10.1063/1.4772490
[5] R. Adami, Constrained energy minimization and ground states for NLS with point defects,, Discrete Contin. Dyn. Syst. Ser. B, 18, 1155 (2013) · Zbl 1280.35132 · doi:10.3934/dcdsb.2013.18.1155
[6] S. Albeverio, <em>Solvable Models in Quantum Mechanics</em>,, American Mathematical Society (2005)
[7] D. Bambusi, Asymptotic stability of ground states in some Hamiltonian PDEs with symmetry,, Comm. Math. Phys. 320 (2013), 320, 499 (2013) · Zbl 1267.35140 · doi:10.1007/s00220-013-1684-3
[8] V. S. Buslaev, On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator,, Comm. PDE, 33, 669 (2008) · Zbl 1185.35247 · doi:10.1080/03605300801970937
[9] V. S. Buslaev, Scattering for the nonlinear Schrödinger equation: states close to a soliton,, St.Petersbourg Math J., 4, 1111 (1993)
[10] V. S. Buslaev, On the stability of solitary waves for nonlinear Schrödinger equations,, Amer.Math.Soc.Transl., 164, 75 (1995) · Zbl 0841.35108 · doi:10.1090/trans2/164/04
[11] V. S. Buslaev, On asymptotic stability of solitary waves for nonlinear Schrödinger equation,, Ann. I. H. Poincaré, 20, 419 (2003) · Zbl 1028.35139 · doi:10.1016/S0294-1449(02)00018-5
[12] C. Cacciapuoti, The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit,, Lett. Math. Phys., 104, 1557 (2014) · Zbl 1303.81072 · doi:10.1007/s11005-014-0725-y
[13] C. Cacciapuoti, The point-like limit for a NLS Equation with concentrated nonlinearity in dimension three,, <a href= (2015)
[14] S. Cuccagna, Stabilization of solution to nonlinear Schrödinger equations,, Comm. Pure Appl. Math., 54, 1110 (2001) · Zbl 1031.35129 · doi:10.1002/cpa.1018
[15] S. Cuccagna, On asymptotic stability in energy space of ground states for nonlinear Schrödinger equations,, Comm. Math. Phys., 284, 51 (2008) · Zbl 1155.35092 · doi:10.1007/s00220-008-0605-3
[16] S. Cuccagna, The Hamiltonian structure of the nonlinear Schrödinger equation and the asymptotic stability of its ground states,, Comm. Math. Phys., 305, 279 (2011) · Zbl 1222.35183 · doi:10.1007/s00220-011-1265-2
[17] Z. Gang, Relaxation of solitons in nonlinear Schrödinger equations with potentials,, Adv. Math., 216, 443 (2007) · Zbl 1126.35065 · doi:10.1016/j.aim.2007.04.018
[18] Z. Gang, Dynamics of nonlinear Schrödinger-Gross-Pitaevskii equations; mass transfer in systems with solitons and degenerates neutral modes,, Analysis & PDE, 1, 267 (2008) · Zbl 1175.35136 · doi:10.2140/apde.2008.1.267
[19] Z. Gang, Equipartition of energy in Nonlinear Schrödinger-Gross-Pitaevskii equations,, AMRX, 2, 123 (2011) · Zbl 1228.35224
[20] I. S. Gradshteyn, <em>Tables of Integrals, Series and Products</em>,, Vth edition (1994) · Zbl 0918.65002
[21] E. Kirr, Asymptotic stability of ground states in 3d nonlinear Schrödinger equation including subcritical cases,, J. Funct. Anal., 257, 3691 (2009) · Zbl 1187.35238 · doi:10.1016/j.jfa.2009.08.010
[22] A. I. Komech, On asymptotic stability of solitary waves for Schrödinger equation coupled to nonlinear oscillator, II,, Comm. Pure Appl. Anal., 202, 1063 (2012)
[23] D. Noja, Wave equations with concentrated nonlinearities,, J. Phys. A: Math. Gen., 38, 5011 (2005) · Zbl 1085.81039 · doi:10.1088/0305-4470/38/22/022
[24] I. M. Sigal, Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions,, Commun. Math. Phys., 2, 297 (1993) · Zbl 0780.35106
[25] A. Soffer, Multichannel nonlinear scattering for nonintegrable equations,, Comm. Math. Phys., 133, 119 (1990) · Zbl 0721.35082 · doi:10.1007/BF02096557
[26] A. Soffer, Multichannel nonlinear scattering for nonintegrable equations II, the case of anisotropic potentials and data,, J. Diff. Eq., 98, 376 (1992) · Zbl 0795.35073 · doi:10.1016/0022-0396(92)90098-8
[27] A. Soffer, Resonances, radiation damping, and instability of Hamiltonian nonlinear waves,, Invent. Math., 136, 9 (1999) · Zbl 0910.35107 · doi:10.1007/s002220050303
[28] A. Soffer, Selection of the ground state for nonlinear Schrödinger equations,, Rev. Math. Phys., 16, 977 (2004) · Zbl 1111.81313 · doi:10.1142/S0129055X04002175
[29] A. Soffer, Theory of nonlinear dispersive waves and selection of the ground state,, Phys. Rev. Lett., 95 (2005) · doi:10.1103/PhysRevLett.95.213905
[30] T. P. Tsai, Asymptotic dynamics of nonlinear Schrödinger equations: resonance-dominated and dispersion-dominated solutions,, Comm. Pure. Appl. Math, 55, 153 (2002) · Zbl 1031.35137 · doi:10.1002/cpa.3012
[31] T. P. Tsai, Relaxation of excited states in nonlinear Schrödinger equations,, Int. Math. Res. Not., 31, 1629 (2002) · Zbl 1011.35120 · doi:10.1155/S1073792802201063
[32] M. Weinstein, Localized states and Dynamics in the Nonlinear Schrödinger/Gross-Pitaevskii equation,, Frontiers in Applied Dynamical Systems, 3, 41 (2015) · doi:10.1007/978-3-319-19935-1_2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.