×

A meshless finite point method for the improved Boussinesq equation using stabilized moving least squares approximation and Richardson extrapolation. (English) Zbl 07777332

Summary: A meshless finite point method (FPM) is developed in this paper for the numerical solution of the nonlinear improved Boussinesq equation. A time discrete technique is used to approximate time derivatives, and then a linearized procedure is presented to deal with the nonlinearity. To achieve stable convergence numerical results in space, the stabilized moving least squares approximation is used to obtain the shape function, and then the FPM is adopted to establish the linear system of discrete algebraic equations. To enhance the accuracy and convergence order in time, the Richardson extrapolation is finally incorporated into the FPM. Numerical results show that the FPM is fourth-order accuracy in both space and time and can obtain highly accurate results in simulating the propagation of a single solitary wave, the interaction of two solitary waves, the solitary wave break-up and the solution blow-up phenomena.
{© 2022 Wiley Periodicals LLC.}

MSC:

65-XX Numerical analysis
35-XX Partial differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L.Debnath, Non‐linear PDEs for scientists and engineers, Birkhäuser, Boston, 1997. · Zbl 0892.35001
[2] V. G.Makhankov, Dynamics of classical solitons, Phys. Rep.35 (1978), 1-128.
[3] A. M.Wazwaz, Partial differential equations and solitary waves theory, Springer, Berlin, 2009. · Zbl 1175.35001
[4] I. L.Bogolubsky, Some examples of inelastic soliton interaction, Comput. Phys. Commun.13 (1997), 149-155.
[5] M. P.Soerensen, P. L.Christiansen, and P. S.Lomdahl, Solitary waves on nonlinear elastic rods. I, J. Acoust. Soc. Am.76 (1984), 871-879. · Zbl 0564.73035
[6] Y. A.Berezin and V. I.Karpman, Nonlinear evolution of disturbances in plasmas and other dispersive media soviet physics, J. Exp. Theor. Phys.24 (1967), 1049-1056.
[7] A. M.Wazwaz, Nonlinear variants of the improved Boussinesq equation with compact and non compact structures, Comput. Math. Appl.49 (2005), 565-574. · Zbl 1070.35043
[8] L.Iskandar and P. C.Jain, Numerical solutions of the improved Boussinesq equation, Proc. Indian Acad. Sci. Math. Sci.89 (1980), 171-181. · Zbl 0451.76016
[9] A. G.Bratsos, A second order numerical scheme for the improved Boussinesq equation, Phys. Lett. A370 (2007), 145-147. · Zbl 1209.65085
[10] A. G.Bratsos, A predictor‐corrector scheme for the improved Boussinesq equation, Chaos Soliton Fract.40 (2009), 2083-2094. · Zbl 1198.65162
[11] D.Irk and İ.Dağ, Numerical simulations of the improved Boussinesq equation, Numer. Methods Partial Differ. Equ.26 (2010), 1316-1327. · Zbl 1426.76473
[12] F. Q.Lu, Z. Y.Song, and Z.Zhang, A compact fourth‐order finite difference scheme for the improved Boussinesq equation with damping terms, J. Comput. Math.34 (2016), 462-478. · Zbl 1374.65153
[13] B.Wongsaijai, C.Oonariya, and K.Poochinapan, Compact structure‐preserving algorithm with high accuracy extended to the improved Boussinesq equation, Math. Comput. Simul.178 (2020), 125-150. · Zbl 1515.65225
[14] Q.Lin, Y. H.Wu, R.Loxton, and S. Y.Lai, Linear B‐spline finite element method for the improved Boussinesq equation, J. Comput. Appl. Math.224 (2009), 658-667. · Zbl 1158.65074
[15] B.Karaagac, Y.Ucar, and A.Esen, Numerical solutions of the improved Boussinesq equation by the Galerkin quadratic B‐spline finite element method, Filomat32 (2018), 5573-5583. · Zbl 1499.65351
[16] Z. Y.Zhang and F. Q.Lu, Quadratic finite volume element method for the improved Boussinesq equation, J. Math. Phys.53 (2012), 013505. · Zbl 1273.35246
[17] Q. X.Wang, Z. Y.Zhang, X. H.Zhang, and Q. Y.Zhu, Energy‐preserving finite volume element method for the improved Boussinesq equation, J. Comput. Phys.270 (2014), 58-69. · Zbl 1349.76405
[18] J. L.Yan, D. W.Deng, F. Q.Lu, and Z. Y.Zhang, A new efficient energy‐preserving finite volume element scheme for the improved Boussinesq equation, Appl. Math. Model.87 (2020), 20-41. · Zbl 1481.65173
[19] H.Borluk and G. M.Muslu, A Fourier pseudospectral method for a generalized improved Boussinesq equation, Numer. Methods Partial Differ. Equ.31 (2015), 995-1008. · Zbl 1331.65144
[20] J. L.Yan, Z. Y.Zhang, T. J.Zhao, and D.Liang, High‐order energy‐preserving schemes for the improved Boussinesq equation, Numer. Methods Partial Differ. Equ.34 (2018), 1145-1165. · Zbl 1407.76109
[21] J. X.Cai, Z. L.Qin, and C. Z.Bai, Multisymplectic scheme for the improved Boussinesq equation, Chin. Phys. Lett.30 (2013), 070202.
[22] X. L.Li, W. Z.Sun, Y. L.Xing, and C. S.Chou, Energy conserving local discontinuous Galerkin methods for the improved Boussinesq equation, J. Comput. Phys.401 (2020), 109002. · Zbl 1453.65334
[23] G. R.Liu, Meshfree methods: Moving beyond the finite element method, 2nd ed., CRC Press, Boca Raton, 2009.
[24] Y. M.Cheng, Meshless methods, Science Press, Beijing, 2015.
[25] Y. B.Chai, W.Li, and Z. Y.Liu, Analysis of transient wave propagation dynamics using the enriched finite element method with interpolation cover functions, Appl. Math. Comput.412 (2022), 126564. · Zbl 1510.74114
[26] W.Li, Q. F.Zhang, Q.Gui, and Y. B.Chai, A coupled FE‐meshfree triangular element for acoustic radiation problems, Int. J. Comput. Methods18 (2021), 2041002. · Zbl 07342002
[27] A.Shokri and M.Dehghan, A not‐a‐knot meshless method using radial basis functions and predictor‐corrector scheme to the numerical solution of improved Boussinesq equation, Comput. Phys. Commun.181 (2010), 1990-2000. · Zbl 1426.76569
[28] Y.Tan and X. L.Li, A meshless algorithm with the improved moving least square approximation for the nonlinear improved Boussinesq equation, Chin. Phys. B.30 (2021), 010201.
[29] M.Dehghan and R.Salehi, A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation, Appl. Math. Model.36 (2012), 1939-1956. · Zbl 1243.76069
[30] T.Zhang, Z. H.Lin, G. Y.Huang, C. M.Fan, and P. W.Li, Solving Boussinesq equations with a meshless finite difference method, Ocean Eng.198 (2020), 106957.
[31] W. T.Shao and X. H.Wu, A numerical study for the KdV and the good Boussinesq equations using Fourier Chebyshev tau meshless method, Numer. Algorithms67 (2014), 581-597. · Zbl 1304.35598
[32] E.Oñate, S.Idelsohn, O. C.Zienkiewicz, R. L.Taylor, and C.Sacco, A finite point method in fluid mechanics problems. Applications to convective transport and fluid flow, Int. J. Numer. Methods Eng.39 (1996), 3839-3866. · Zbl 0884.76068
[33] X. L.Li, Error estimates for the moving least‐square approximation and the element‐free Galerkin method in n‐dimensional spaces, Appl. Numer. Math.99 (2016), 77-97. · Zbl 1329.65274
[34] S.Abbasbandy, E.Shivanian, and K. H.Al‐Jizani, On the analysis of a kind of nonlinear Sobolev equation through locally applied pseudo‐spectral meshfree radial point interpolation, Numer. Methods Partial Differ. Equ.37 (2021), 462-478.
[35] M.Hussain and S.Haq, A hybrid radial basis functions collocation technique to numerically solve fractional advection‐diffusion models, Numer. Methods Partial Differ. Equ.36 (2020), 1254-1279.
[36] J.Yang, H.Hu, and M.Potier‐Ferry, Least‐square collocation and Lagrange multipliers for Taylor meshless method, Numer. Methods Partial Differ. Equ.35 (2019), 84-113. · Zbl 1419.65134
[37] R. J.Cheng and Y. M.Cheng, Error estimates for the finite point method, Appl. Numer. Math.58 (2008), 884-898. · Zbl 1145.65086
[38] X. L.Li and H. Y.Dong, Error analysis of the meshless finite point method, Appl. Math. Comput.382 (2020), 125326. · Zbl 1508.65165
[39] M.Shirzadi, M.Dehghan, and A. F.Bastani, Optimal uniform error estimates for moving least‐squares collocation with application to option pricing under jump‐diffusion processes, Numer. Methods Partial Differ. Equ.37 (2021), 98-117.
[40] E.Ortega, E.Oñate, S.Idelsohn, and R.Flores, Comparative accuracy and performance assessment of the finite point method in compressible flow problems, Comput. Fluids89 (2014), 53-65. · Zbl 1391.76354
[41] E.Ortega, R.Flores, E.Oñate, and S.Idelsohn, A‐posteriori error estimation for the finite point method with applications to compressible flow, Comput. Mech.60 (2017), 219-233. · Zbl 1429.76071
[42] A.Taleei and M.Dehghan, An efficient meshfree point collocation moving least squares method to solve the interface problems with nonhomogeneous jump conditions, Numer. Methods Partial Differ. Equ.31 (2015), 1031-1053. · Zbl 1326.65165
[43] M.Dehghan and M.Abbaszadeh, Interpolating stabilized moving least squares (MLS) approximation for 2D elliptic interface problems, Comput. Methods Appl. Mech. Eng.328 (2018), 775-803. · Zbl 1439.82015
[44] M.Shirzadi, M.Dehghan, and A. F.Bastani, On the pricing of multi‐asset options under jump‐diffusion processes using meshfree moving least‐squares approximation, Commun. Nonlinear Sci. Numer. Simul.84 (2020), 105160. · Zbl 1463.91203
[45] M.Kamranian, M.Dehghan, and M.Tatari, Study of the two‐dimensional sine‐Gordon equation arising in Josephson junctions using meshless finite point method, Int. J. Numer. Model.30 (2017), e2210.
[46] M.Abbaszadeh and M.Dehghan, The reproducing kernel particle Petrov‐Galerkin method for solving two‐dimensional nonstationary incompressible Boussinesq equations, Eng. Anal. Bound. Elem.106 (2019), 300-308. · Zbl 1464.76052
[47] R. J.Cheng and Y. M.Cheng, The meshless method inverse heat conduction problem source parameter, Acta Phys. Sin.56 (2007), 5569-5574. · Zbl 1150.80304
[48] R. J.Cheng and Y. M.Cheng, The meshless method for a two‐dimensional inverse heat conduction problem with a source parameter, Chinese J. Theor. Appl. Mech.23 (2007), 843-847.
[49] S. Y.Yu, M. J.Peng, H.Cheng, and Y. M.Cheng, The improved element‐free Galerkin method for three‐dimensional elastoplasticity problems, Eng. Anal. Bound. Elem.104 (2019), 215-224. · Zbl 1464.74225
[50] X. L.Li, Three‐dimensional complex variable element‐free Galerkin method, Appl. Math. Model.63 (2018), 148-171. · Zbl 1480.65342
[51] D.Liu and Y. M.Cheng, The interpolating element‐free Galerkin (IEFG) method for three‐dimensional potential problems, Eng. Anal. Bound. Elem.108 (2019), 115-123. · Zbl 1464.65178
[52] X. L.Li and S. L.Li, On the stability of the moving least squares approximation and the element‐free Galerkin method, Comput. Math. Appl.72 (2016), 1515-1531. · Zbl 1361.65090
[53] J. S.Wan and X. L.Li, Analysis of a superconvergent recursive moving least squares approximation, Appl. Math. Lett.133 (2022), 108223. · Zbl 1502.65228
[54] Z. Y.Zheng and X. L.Li, Theoretical analysis of the generalized finite difference method, Comput. Math. Appl.120 (2022), 1-14. · Zbl 1524.65722
[55] T.Zhang, X. L.Li, and L. W.Xu, Error analysis of an implicit Galerkin meshfree scheme for general second‐order parabolic problems, Appl. Numer. Math.177 (2022), 58-78. · Zbl 1484.65237
[56] Z.Zlatev, I.Dimov, I.Farago, and A.Havasi, Richardson extrapolation: Practical aspects and applications, De Gruyter Series in Applied and Numerical Mathematics, Vol 2, De Gruyter, Berlin, 2017.
[57] R. L.Burden and J. D.Faires, Numerical analysis, 9th ed., Cengage Learning, Boston, 2011.
[58] Z. J.Yang, Existence and non‐existence of global solutions to a generalized modification of the improved Boussinesq equation, Math. Methods Appl. Sci.21 (1998), 1467-1477. · Zbl 0914.35103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.