×

Direct numerical simulations of particle transport in a model estuary. (English) Zbl 1273.86009

Summary: We investigate numerically the mixing of freshwater with ambient saltwater in a model estuary along with associated particle settling processes. We first discuss and specify two numerical setups that consider several relevant features to study the particle settling. The first configuration is a large rectangular basin with a small inlet for the (particle-laden) freshwater; the second is geometrically identical to the first except that the flow is laterally confined to the narrow inlet width. The two flows are computed until a statistically stationary solution is reached. We perform highly resolved direct numerical simulations using a high-order finite difference approach to yield reliable and accurate results. Accordingly, all relevant turbulent scales are resolved and turbulence modeling is not needed. The main target of this study is to describe and illustrate the fluid dynamics and the particle settling processes under the influence of turbulence arising in the freshwater/saltwater-stratified mixing layer. To this end we analyze and compare the two simulations with respect to different aspects of the freshwater/saltwater interaction and to the transport and settling processes of the particles. We investigate the spatial structure as well as the temporal evolution of the flows and the particle suspensions. Generally, we find a qualitatively good agreement of both numerical simulations with pertinent laboratory experiments. Particularly, the results confirm a significant enhancement of the particle settling speeds compared to pure Stokes settling in the presence of turbulence. However, we also demonstrate that the results for the two configurations differ fundamentally in several aspects: stability of the freshwater/saltwater interface, degree of turbulent mixing, particle plume expansion and particle settling enhancement. Using these two simulations we explain the observed settling enhancement, which is not related to the particle inertia (as it is not considered in the numerical model) but rather to the buoyancy velocity of the particle suspension and the geometry of the estuary mouth configuration.

MSC:

86A05 Hydrology, hydrography, oceanography
86-08 Computational methods for problems pertaining to geophysics
76F65 Direct numerical and large eddy simulation of turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1029/JC092iC05p05435 · doi:10.1029/JC092iC05p05435
[2] DOI: 10.1061/(ASCE)0733-9429(1993)119:8(878) · doi:10.1061/(ASCE)0733-9429(1993)119:8(878)
[3] DOI: 10.1016/j.csr.2004.02.006 · doi:10.1016/j.csr.2004.02.006
[4] DOI: 10.1016/j.csr.2004.03.009 · doi:10.1016/j.csr.2004.03.009
[5] DOI: 10.1016/j.csr.2007.11.002 · doi:10.1016/j.csr.2007.11.002
[6] DOI: 10.1046/j.1365-3091.2001.00384.x · doi:10.1046/j.1365-3091.2001.00384.x
[7] DOI: 10.1086/629606 · doi:10.1086/629606
[8] DOI: 10.1016/S0278-4343(00)00064-9 · doi:10.1016/S0278-4343(00)00064-9
[9] DOI: 10.1017/S0022112002001593 · Zbl 1152.76303 · doi:10.1017/S0022112002001593
[10] DOI: 10.1063/1.2166456 · doi:10.1063/1.2166456
[11] DOI: 10.1017/S0022112093002708 · doi:10.1017/S0022112093002708
[12] DOI: 10.1017/S002211209900556X · Zbl 0938.76517 · doi:10.1017/S002211209900556X
[13] DOI: 10.1016/S0399-1784(03)00058-6 · doi:10.1016/S0399-1784(03)00058-6
[14] DOI: 10.1029/95JC03024 · doi:10.1029/95JC03024
[15] DOI: 10.1016/S0278-4343(02)00036-5 · doi:10.1016/S0278-4343(02)00036-5
[16] DOI: 10.1016/j.csr.2006.12.004 · doi:10.1016/j.csr.2006.12.004
[17] DOI: 10.1175/JPO2805.1 · doi:10.1175/JPO2805.1
[18] Xia M., Estuaries Coasts 30 pp 698– (2007)
[19] DOI: 10.1175/1520-0485(1999)029<1892:POBCDO>2.0.CO;2 · doi:10.1175/1520-0485(1999)029<1892:POBCDO>2.0.CO;2
[20] DOI: 10.1029/97JC02937 · doi:10.1029/97JC02937
[21] DOI: 10.1175/1520-0485(1990)020<0551:TFAFOA>2.0.CO;2 · doi:10.1175/1520-0485(1990)020<0551:TFAFOA>2.0.CO;2
[22] DOI: 10.1016/j.ijheatfluidflow.2010.02.006 · doi:10.1016/j.ijheatfluidflow.2010.02.006
[23] DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[24] DOI: 10.1029/JC088iC08p04579 · doi:10.1029/JC088iC08p04579
[25] Henniger R., Proc. Appl. Math. Mech. 2007 pp 4100009– (7) · doi:10.1002/pamm.200700411
[26] DOI: 10.1016/j.jcp.2010.01.015 · Zbl 1391.76476 · doi:10.1016/j.jcp.2010.01.015
[27] DOI: 10.1137/S1064827596310251 · Zbl 0930.35015 · doi:10.1137/S1064827596310251
[28] DOI: 10.1007/978-3-642-05146-3 · doi:10.1007/978-3-642-05146-3
[29] Henniger R., Direct and Large-Eddy Simulation VII pp 121– (2008)
[30] Henniger R., Bull. Am. Phys. Soc. 61 (2008)
[31] DOI: 10.1017/S0022112005006932 · Zbl 1085.76559 · doi:10.1017/S0022112005006932
[32] DOI: 10.1007/s00162-008-0085-2 · Zbl 1178.76115 · doi:10.1007/s00162-008-0085-2
[33] DOI: 10.1016/S0278-4343(00)00063-7 · doi:10.1016/S0278-4343(00)00063-7
[34] DOI: 10.1016/S0278-4343(00)00069-8 · doi:10.1016/S0278-4343(00)00069-8
[35] DOI: 10.1086/629747 · doi:10.1086/629747
[36] DOI: 10.1063/1.864230 · Zbl 0538.76031 · doi:10.1063/1.864230
[37] DOI: 10.1063/1.1532731 · Zbl 1185.76126 · doi:10.1063/1.1532731
[38] DOI: 10.1016/S0169-5983(96)00042-1 · doi:10.1016/S0169-5983(96)00042-1
[39] DOI: 10.1002/1097-0363(20000630)33:4<499::AID-FLD19>3.0.CO;2-7 · Zbl 0959.76062 · doi:10.1002/1097-0363(20000630)33:4<499::AID-FLD19>3.0.CO;2-7
[40] DOI: 10.1175/1520-0485(1987)017<1668:SIIAHS>2.0.CO;2 · doi:10.1175/1520-0485(1987)017<1668:SIIAHS>2.0.CO;2
[41] DOI: 10.1103/PhysRevE.54.2084 · doi:10.1103/PhysRevE.54.2084
[42] DOI: 10.1006/jcph.1997.5649 · Zbl 0878.65071 · doi:10.1006/jcph.1997.5649
[43] Wray A. A., Very Low Storage Time-Advancement Schemes (1986)
[44] DOI: 10.1016/0021-9991(91)90238-G · Zbl 0726.76074 · doi:10.1016/0021-9991(91)90238-G
[45] DOI: 10.1016/j.jcp.2007.09.026 · Zbl 1290.76023 · doi:10.1016/j.jcp.2007.09.026
[46] DOI: 10.1016/0017-9310(72)90054-3 · Zbl 0246.76080 · doi:10.1016/0017-9310(72)90054-3
[47] DOI: 10.1137/S1064827596312547 · Zbl 0935.76057 · doi:10.1137/S1064827596312547
[48] DOI: 10.1137/0913035 · Zbl 0761.65023 · doi:10.1137/0913035
[49] Brandt A., Multigrid techniques: 1984 guide with applications to fluid dynamics (1984) · Zbl 0581.76033
[50] DOI: 10.1016/S0021-9991(03)00194-3 · Zbl 1022.65030 · doi:10.1016/S0021-9991(03)00194-3
[51] DOI: 10.1006/jpdc.1996.0022 · Zbl 05476928 · doi:10.1006/jpdc.1996.0022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.