# zbMATH — the first resource for mathematics

Boundary of the range of transient random walk. (English) Zbl 1382.60066
The authors of this paper study the boundary of the range of a simple random walk on $$\mathbb Z^d$$ in the transient case $$d >2$$. The authors show (Proposition 1.2) that volumes of the range and its boundary differ mainly by a martingale. Proposition 1.4 presents a precise estimate on the mean square of the martingale. This estimate is delicate, uses precise Green function asymptotics, and symmetry of the walk. As a consequences of Propositions 1.2 and 1.4, the authors obtain an upper bound on the variance of order $$n\log n$$ in dimension three and establish a central limit theorem in dimension four and larger.

##### MSC:
 60G50 Sums of independent random variables; random walks 60F05 Central limit and other weak theorems
Full Text:
##### References:
 [1] Asselah, A., Schapira, B.: Moderate deviations for the range of a transient walk: path concentration. arXiv:1601.03957 · Zbl 1378.60055 [2] Benjamini, I; Kozma, G; Yadin, A; Yehudayoff, A, Entropy of random walk range, Ann. Inst. Henri Poincaré Probab. Stat., 46, 1080-1092, (2010) · Zbl 1208.82046 [3] Berestycki, N., Yadin, A.: Condensation of random walks and the Wulff crystal. arXiv:1305.0139 · Zbl 1359.60061 [4] Chen, X.: Random walk intersections, large deviations and related topics. In: Mathematical Surveys and Monographs, vol. 157. AMS, New York (2009) · Zbl 1192.60002 [5] Durrett, R.: Probability: Theory and Examples, vol. 4. Cambridge University Press, Cambridge (2010) · Zbl 1202.60001 [6] Dvoretzky, A., Erdós, P.: Some problems on random walk in space. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp. 353-367. University of California Press, Berkeley (1951) [7] Hebisch, W; Saloff-Coste, L, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., 21, 673-709, (1993) · Zbl 0776.60086 [8] Hammersley, JM, Generalization of the fundamental theorem on subadditive functions, Proc. Cambr. Phil. Soc., 58, 235-238, (1962) · Zbl 0121.29402 [9] Jain, NC; Pruitt, WE, The range of transient random walk, J. Analyze Math., 24, 369-393, (1971) · Zbl 0249.60038 [10] Lawler, G.F., Limic, V.: Random walk: a modern introduction. In: Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010) · Zbl 1210.60002 [11] Gall, J-F, Propriétés d’intersection des marches aléatoires. I. convergence vers le temps local d’intersection, Commun. Math. Phys., 104, 471-507, (1986) · Zbl 0609.60078 [12] Mathieu, P., Sisto, A.: Deviation inequalities and CLT for random walks on acylindrically hyperbolic groups. arXiv:1411.7865 · Zbl 0609.60078 [13] Okada, I, The inner boundary of random walk range, J. Math. Soc. Japan, 68, 939-959, (2016) · Zbl 1359.60061 [14] Okada, I.: Frequently visited site of the inner boundary of simple random walk range. arXiv:1409.8368 · Zbl 1335.60071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.