×

Moving meshes in complex configurations using the composite sliding grid method. (English) Zbl 1519.76279

Summary: The study is an extension of the sliding method to composite grids whereby the grid generation complexity is diminished and one can control grid features during the motion. In this approach, a fixed mesh is attached to the moving body, and together they slide through a fixed connectivity reference mesh. The connectivities of both, the reference and the attached mesh remain fixed during the motion. Only the connections between the reference mesh and the attached body-fitted mesh are modified by a stitching operation. This allows to retain the mesh features (e.g. concentration, orthogonality, etc.) inside the moving block. This also allows the moving block to combine translation and rotation. Since the attached mesh is always fixed, one can handle grid generation process for complex combined motion. The overall methodology is applied to complex geometric configurations with large and complex motion, representative of engineering applications. These procedures were applied to solve simple flows around moving bodies with varying geometric features (circular, square and wavy boundaries) to test the capability of the global algorithm and to verify the satisfaction of geometric conservation law (GCL).

MSC:

76M99 Basic methods in fluid mechanics
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Software:

FUN3D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zheng, X.; Lowengrub, J.; Anderson, A.; Cristini, V., Adaptive unstructured volume remeshing-II: application to two-and three-dimensional level-set simulations of multiphase flow, J Comput Phys, 208, 2, 626-650 (2005) · Zbl 1075.65120
[2] Kwak, S.; Pozrikidis, C., Adaptive triangulation of evolving, closed, or open surfaces by the advancing-front method, J Comput Phys, 145, 1, 61-88 (1998) · Zbl 0947.76068
[3] Saksono, P.; Dettmer, W.; Perić, D., An adaptive remeshing strategy for flows with moving boundaries and fluid-structure interaction, Int J Numer Methods Eng, 71, 9, 1009-1050 (2007) · Zbl 1194.76140
[4] Schneiders, R.; Oberschelp, W.; Kopp, R.; Becker, M., New and effective remeshing scheme for the simulation of metal forming processes, Eng Comput, 8, 3, 163-176 (1992) · Zbl 0755.65127
[5] Cristini, V.; Bławzdziewicz, J.; Loewenberg, M., An adaptive mesh algorithm for evolving surfaces: simulations of drop breakup and coalescence, J Comput Phys, 168, 2, 445-463 (2001) · Zbl 1153.76382
[6] Trépanier, J.; Reggio, M.; Paraschivoiu, M.; Camarero, R., Unsteady euler solutions for arbitrarily moving bodies and boundaries, AIAA J, 31, 10, 1869-1876 (1993) · Zbl 0784.76074
[7] Peskin, C. S., Flow patterns around heart valves: a numerical method, J Comput Phys, 10, 2, 252-271 (1972) · Zbl 0244.92002
[8] Kempe, T.; Fröhlich, J., An improved immersed boundary method with direct forcing for the simulation of particle laden flows, J Comput Phys, 231, 9, 3663-3684 (2012) · Zbl 1402.76143
[9] Frisani, A.; Hassan, Y. A., On the immersed boundary method: finite element versus finite volume approach, Comput Fluids, 121, 51-67 (2015) · Zbl 1390.65105
[10] Habashi, W. G.; Dompierre, J.; Bourgault, Y.; Ait-Ali-Yahia, D.; Fortin, M.; Vallet, M.-G., Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: general principles, Int J Numer Methods Fluids, 32, 6, 725-744 (2000) · Zbl 0981.76052
[11] Hassan, O.; Sørensen, K.; Morgan, K.; Weatherill, N., A method for time accurate turbulent compressible fluid flow simulation with moving boundary components employing local remeshing, Int J Numer Methods Fluid, 53, 8, 1243-1266 (2007) · Zbl 1108.76044
[12] Farhat, C.; Geuzaine, P.; Grandmont, C., The discrete geometric conservation law and the nonlinear stability of ale schemes for the solution of flow problems on moving grids, J Comput Phys, 174, 2, 669-694 (2001) · Zbl 1157.76372
[13] Joubarne, E.; Guibault, F., 3D metric-based anisotropic mesh adaptation for vortex capture, Math Comput Simul, 82, 1, 163-180 (2011) · Zbl 1426.76382
[14] Labbé, P.; Dompierre, J.; Vallet, M.-G.; Guibault, F., Verification of three-dimensional anisotropic adaptive processes, Int J Numer Methods Eng, 88, 350-369 (2011) · Zbl 1242.65259
[15] Sirois, Y.; Dompierre, J.; Vallet, M.-G.; Guibault, F., Hybrid mesh smoothing based on Riemannian metric non-conformity minimization, Finite Elem Anal Des, 46, 47-60 (2010)
[16] Biedron, R.; Thomas, J., Recent enhancements to the FUN3D flow solver for moving-mesh applications, Proceedings of the 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, 1360 (2009)
[17] Schillinger, D.; Dede, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput Methods Appl Mech Eng, 249, 116-150 (2012) · Zbl 1348.65055
[18] Steger JL, Dougherty FC, Benek JA. A chimera grid scheme.[multiple overset body-conforming mesh system for finite difference adaptation to complex aircraft configurations. In NASA Technical Reports server, 1983.
[19] Wang, Z. J.; Parthasarathy, V., A fully automated chimera methodology for multiple moving body problems, Int J Numer Methods Fluid, 33, 919-938 (2000) · Zbl 0984.76073
[20] Thompson, J. F.; Soni, B. K.; Weatherill, N. P., Handbook of grid generation (1998), CRC Press
[21] Kao, K.-H.; Liou, M.-S.; Chow, C.-Y., Grid adaptation using chimera composite overlapping meshes, AIAA, 32, 5 (1994) · Zbl 0800.76324
[22] Paper No. AIAA-97-1858
[23] Löhner, R.; Yang, C., Improved ale mesh velocities for moving bodies, Commun Numer Methods Eng, 12, 599-608 (1998) · Zbl 0858.76042
[24] Bau J, Luo H, Loehner R, Goldberg E, Feldhun A. Application of unstructured moving body methodology to the simulation of fuel tank separation from an f-16 fighter. In: Proceedings of the 35th aerospace sciences meeting and exhibit, AIAA Paper No. AIAA-1997-0166, Reno, NV. 1997.
[25] Jasak, H.; Tukovic, Z., Automatic mesh motion for the unstructured finite volume method, Trans FAMENA, 30, 2, 1-20 (2006)
[26] Bonet, J.; Peraire, J., An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems, Int J Numer Methods Eng, 31, 1, 1-17 (1991) · Zbl 0825.73958
[27] Dwight, R. P., Robust mesh deformation using the linear elasticity equations, Computational fluid dynamics 2006, 401-406 (2009), Springer
[28] Batina, J. T., Unsteady euler airfoil solutions using unstructured dynamic meshes, AIAA J, 28, 8, 1381-1388 (1990)
[29] Degand, C.; Farhat, C., A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Comput Struct, 80, 3, 305-316 (2002)
[30] Gawlik, E. S.; Lew, A. J., High-order finite element methods for moving-boundary problems with prescribed boundary evolution, Comput Methods Appl Mech Eng, 278, 314-346 (2015) · Zbl 1423.76233
[31] Rangarajan R, Lew AJ. Universal meshes: a new paradigm for computing with nonconforming triangulations. 2012. arXiv:1201.49032012.
[32] Arabi, S.; Camarero, R.; Guibault, F., Unstructured meshes for large body motion using mapping operators, Math Comput Simul, 106, 26-43 (2014)
[33] Blades, E. L.; Marcum, D. L., A sliding interface method for unsteady unstructured flow simulations, Int J Numer Methods Fluid, 53, 3, 507-529 (2007) · Zbl 1370.76118
[34] van der Weide, E.; Kalitzin, G.; Schluter, J.; Alonso, J., Unsteady turbomachinery computations using massively parallel platforms, Proceedings of the 44th AIAA aerospace sciences meeting and exhibit, 421 (2006)
[35] Falsafioon, M.; Arabi, S.; Camarero, R.; Guibault, F., Comparison of two mesh smoothing techniques for unstructured grids, Proceedings of the IOP conference series: earth and environmental science, Vol. 22, 022020 (2014), IOP Publishing
[36] Falsafioon, M.; Arabi, S.; Camarero, R.; Guibault, F., Unstructured grid smoothing for turbomachinery applications, Int J Fluid Mach Syst, 10, 4, 421-431 (2017)
[37] Falsafioon, M., Moving grids in complex configurations (2016), Ecole Polytechnique, Montreal (Canada), Ph.D. thesis
[38] Demirdžić, I.; Perić, M., Space conservation law in finite volume calculations of fluid flow, Int J Numer Methods Fluid, 8, 9, 1037-1050 (1988) · Zbl 0647.76018
[39] Thomas, P.; Lombard, C., Geometric conservation law and its application to flow computations on moving grids, AIAA J, 17, 10, 1030-1037 (1979) · Zbl 0436.76025
[40] Reggio, M.; Trepanier, J.; Zhang, H.; Camarero, R., Numerical simulation of the gas flow in a circuit-breaker, Int J Numer Methods Eng, 34, 2, 607-618 (1992) · Zbl 0757.76050
[41] Masatsuka, K., I do like CFD, Vol. 1, 1 (2013), Lulu. com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.