×

Numerical simulation of metal removal in laser drilling using meshless local Petrov-Galerkin collocation method. (English) Zbl 1480.74055

Summary: A simplified 2D axisymmetric meshfree model of transient metal laser drilling is proposed for a continuous laser beam of Gaussian distribution. The penetration depth is predicted over the whole ablation time. The meshless local Petrov-Galerkin (MLPG) collocation method is used for discretizing the governing equation. Moving least square (MLS) and weighted least square (WLS) are used for approximating the local temperature field. The scheme is constructed in MATLAB, and the results are compared with previous numerical and experimental studies. The numerical results agree with the previous work, thus showing the models reliability in predicting the penetration depth for such a physically complex process.

MSC:

74F05 Thermal effects in solid mechanics
80M22 Spectral, collocation and related (meshless) methods applied to problems in thermodynamics and heat transfer

Software:

Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nguyen, V. P.; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: a review and computer implementation aspects, Math. Comput. Simul., 79, 3, 763-813 (2008) · Zbl 1152.74055
[2] Li, H.; Mulay, S. S., Meshless Methods and Their Numerical Properties (2013), CRC Press · Zbl 1266.65001
[3] Monaghan, J. J., Smoothed particle hydrodynamics, Rep. Prog. Phys., 68, 8, 1703 (2005) · Zbl 1160.76399
[4] Liu, G. R.; Gu, Y. T., An Introduction to Meshfree Methods and Their Programming (2005), Springer Science + Business Media: Springer Science + Business Media Berlin/Heidelberg
[5] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Eng., 37, 2, 229-256 (1994) · Zbl 0796.73077
[6] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 2, 117-127 (1998) · Zbl 0932.76067
[7] Atluri, S. N., The Meshless Method (MLPG) for Domain & BIE Discretizations (2004), Tech Science Press Forsyth · Zbl 1105.65107
[8] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comput., 37, 155, 141-158 (1981) · Zbl 0469.41005
[9] Lancaster, P.; estutis Šalkauskas, K., Curve and Surface Fitting: An Introduction (1986), Academic Press: Academic Press London, 1 · Zbl 0649.65012
[10] Singh, I. V., A numerical solution of composite heat transfer problems using meshless method, Int. J. Heat Mass Transf., 47, 10-11, 2123-2138 (2004) · Zbl 1050.80006
[11] Wu, X.; Shen, S.; Tao, W., Meshless local Petrov-Galerkin collocation method for two-dimensional heat conduction problems, Comput. Model. Eng. Sci., 22, 1, 65 (2007) · Zbl 1152.80329
[12] Wu, X.-H.; Tao, W.-Q., Meshless method based on the local weak-forms for steady-state heat conduction problems, Int. J. Heat Mass Transf., 51, 11-12, 3103-3112 (2008) · Zbl 1144.80356
[13] Ahmadi, I.; Sheikhy, N.; Aghdam, M. M.; Nourazar, S. S., A new local meshless method for steady-state heat conduction in heterogeneous materials, Eng. Anal. Bound. Elem., 34, 12, 1105-1112 (2010) · Zbl 1244.80018
[14] Lu, Y. Y.; Belytschko, T.; Gu, L., A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Eng., 113, 3-4, 397-414 (1994) · Zbl 0847.73064
[15] Atluri, S. N.; Kim, H.-G.; Cho, J. Y., A critical assessment of the truly meshless local Petrov-Galerkin (MLPG), and local boundary integral equation (LBIE) methods, Comput. Mech., 24, 5, 348-372 (1999) · Zbl 0977.74593
[16] Chen, X. L.; Liu, G. R.; Reddy, J. N., Buckling of symmetrically laminated composite plates using the element-free Galerkin method, Int. J. Struct. Stab. Dyn., 02, 03, 281-294 (2002) · Zbl 1205.74162
[17] Verhoeven, K., Modelling laser percussion drilling (2004), Technische Universiteit Eindhoven, (Ph.D. thesis)
[18] Ng, G. K.L.; Crouse, P. L.; Li, L., An analytical model for laser drilling incorporating effects of exothermic reaction, pulse width and hole geometry, Int. J. Heat Mass Transf., 49, 7-8, 1358-1374 (2006) · Zbl 1189.76648
[19] Collins, J.; Gremaud, P., A simple model for laser drilling, Math. Comput. Simul., 81, 8, 1541-1552 (2011) · Zbl 1219.78112
[20] Muhammad, N.; Rogers, B. D.; Li, L., Understanding the behaviour of pulsed laser dry and wet micromachining processes by multi-phase smoothed particle hydrodynamics (SPH) modelling, J. Phys. D Appl. Phys., 46, 9, 095101 (2013)
[21] Zhang, Y. M.; Shen, Z. H.; Ni, X. W., Modeling and simulation on long pulse laser drilling processing, Int. J. Heat Mass Transf., 73, 429-437 (2014)
[22] Zhang, T.; Ni, C.; Zhou, J.; Zhang, H.; Shen, Z.; Ni, X.; Lu, J., Numerical simulation of heat transfer and fluid flow in laser drilling of metals, (Andreev, Y. M.; Lin, Z.; Ni, X.; Ye, X., ln: Proceedings of the Third International Symposium on Laser Interaction with Matter (2015), International Society for Optics and Photonics, SPIE-Int. Soc. Optical Eng.), 954321
[23] Gross, M., Smooth particle hydrodynamics (SPH) modelling of laser cutting, Proceedings of the International Congress on Applications of Lasers & Electro-Optics, 637-644 (2008), Laser Institute of America
[24] Abidou, D.; Yusoff, N.; Nazri, N.; Awang, M. A.O.; Hassan, M. A.; Sarhan, A. A.D., Numerical simulation of metal removal in laser drilling using symmetric smoothed particle hydrodynamics, Precis. Eng., 49, 69-77 (2017)
[25] Abidou, D.; Yusoff, N.; Nazri, N.; Awang, M. A.O.; Hassan, M. A.; Sarhan, A. A.D., Numerical simulation of metal removal in laser drilling using radial point interpolation method, Eng. Anal. Bound. Elem., 77, 89-96 (2017) · Zbl 1403.78031
[26] Steen, W. M.; Mazumder, J., Laser Material Processing (2010), Springer Science + Business Media
[27] Tsai, C. L.; Guan, Y. L.; Batra, R. C.; Ohanehi, D. C.; Dillard, J. G.; Nicoli, E.; Dillard, D. A., Comparison of the performance of SSPH and MLS basis functions for two-dimensional linear elastostatics problems including quasistatic crack propagation, Comput. Mech., 51, 1, 19-34 (2012)
[28] Xie, J.; Kar, A.; Rothenflue, J. A.; Latham, W. P., Temperature-dependent absorptivity and cutting capability of \(CO_2\), nd:YAG and chemical oxygen-iodine lasers, J. Laser Appl., 9, 2, 77-85 (1997)
[29] Bergström, D., The absorption of laser light by rough metal surfaces (2008), Luleå University of Technology, (Ph.D. thesis)
[30] Zhang, Y. W.; Faghri, A., Vaporization, melting and heat conduction in the laser drilling process, Int. J. Heat Mass Transf., 42, 10, 1775-1790 (1999) · Zbl 1054.76581
[31] Ganesh, R. K.; Faghri, A.; Hahn, Y., A generalized thermal modeling for laser drilling process—I. mathematical modeling and numerical methodology, Int. J. Heat Mass Transf., 40, 14, 3351-3360 (1997) · Zbl 0936.76540
[32] Ganesh, R. K.; Faghri, A.; Hahn, Y., A generalized thermal modeling for laser drilling process—II. Numerical simulation and results, Int. J. Heat Mass Transf., 40, 14, 3361-3373 (1997) · Zbl 0936.76540
[33] Kar, A.; Rockstroh, T.; Mazumder, J., Two-dimensional model for laser-induced materials damage: effects of assist gas and multiple reflections inside the cavity, J. Appl. Phys., 71, 6, 2560-2569 (1992)
[34] Bergström, D.; Powell, J.; Kaplan, A., The absorptance of steels to nd: YLF and nd: YAG laser light at room temperature, Appl. Surf. Sci., 253, 11, 5017-5028 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.