×

An overview of approaches to the analysis and modelling of multivariate geostatistical data. (English) Zbl 1321.86011

Summary: We give an overview of existing approaches for the analysis of geostatistical multivariate data, namely spatially indexed multivariate data where the indexing is continuous across space. These approaches are divided into two classes: factor models and spatial random field models. Factor models may be further subdivided into a descriptive sub-class, where the factors are directly obtainable as linear combinations of the manifest variables, and an inferential subclass, where the factors are latent quantities that have to be estimated from the data. Spatial random field models include a variety of different types, the most prominent being the proportional correlation model, the linear coregionalisation model, and several convolution-based models. We provide an overview of the different approaches, and draw out some connections between them.

MSC:

86A32 Geostatistics
62H11 Directional data; spatial statistics
86-02 Research exposition (monographs, survey articles) pertaining to geophysics
62M30 Inference from spatial processes

Software:

spBayes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abellan JJ, Fecht D, Best N, Richardson S, Briggs DJ (2007) Bayesian analysis of the multivariate geographical distribution of the socio-economic environment in England. EnvironMetrics 18:745–758 · doi:10.1002/env.872
[2] Apanasovich TV, Genton MG (2010) Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97:15–30 · Zbl 1183.62164 · doi:10.1093/biomet/asp078
[3] Bailey TC, Krzanowski WJ (2000) Extensions to spatial factor methods with an illustration in geochemistry. Math Geol 32:657–682 · doi:10.1023/A:1007589505425
[4] Bailey TC, Barcellos C, Krzanowski WJ (2005) Use of spatial factors in the analysis of heavy metals in sediments in a Brazilian coastal region. EnvironMetrics 16:563–572 · doi:10.1002/env.708
[5] Banerjee S, Carlin BP, Gelfand AE (2004) Hierarchical modeling and analysis for spatial data. Chapman & Hall/CRC Press, Boca Raton
[6] Banerjee S, Gelfand A, Finley A, Sang H (2008) Gaussian predictive process models for large spatial datasets. J R Stat Soc, Ser B, Stat Methodol 70:825–848 · Zbl 05563371 · doi:10.1111/j.1467-9868.2008.00663.x
[7] Biggeri A, Bonannini M, Catelan D, Divino F, Dreassi E, Lagazio C (2005) Bayesian ecological regression with latent factors: atmospheric pollutants emissions and mortality for lung cancer. Environ Ecol Stat 12:397–409 · doi:10.1007/s10651-005-1521-8
[8] Boucher A, Dimitrakopoulos R (2009) Block simulation of multiple correlated variables. Math Geosci 41:215–237 · Zbl 1162.86317 · doi:10.1007/s11004-008-9178-0
[9] Bucci G, Vendramin GG (2000) Delineation of genetic zones in the European Norway spruce natural range: preliminary evidence. Mol Ecol 9:923–934 · doi:10.1046/j.1365-294x.2000.00946.x
[10] Bucci G, Gonzalez-Martinez SC, LeProvost G, Plomion C, Ribeiro MM, Sebastiani F, Alia R, Vendramin GG (2007) Range-wide phylogeography and gene zones in Pinus pinaster Ait revealed by chloroplast microsatellite markers. Mol Ecol 16:2137–2153 · doi:10.1111/j.1365-294X.2007.03275.x
[11] Calder CA (2007) Dynamic factor process convolution models for multivariate space–time data with application to air quality assessment. Environ Ecol Stat 14:229–247 · doi:10.1007/s10651-007-0019-y
[12] Calder CA (2008) A dynamic process convolution approach to modeling ambient particulate matter concentrations. EnvironMetrics 19:39–48 · doi:10.1002/env.852
[13] Christensen WF, Amemiya Y (2001) Generalized shifted-factor analysis method for multivariate geo-referenced data. Math Geol 33:801–824 · Zbl 1011.86009 · doi:10.1023/A:1010998730645
[14] Christensen WF, Amemiya Y (2002) Latent variable analysis of multivariate spatial data. J Am Stat Assoc 97:302–317 · Zbl 1073.62537 · doi:10.1198/016214502753479437
[15] Christensen WF, Amemiya Y (2003) Modeling and prediction for multivariate spatial factor analysis. J Stat Plan Inference 115:543–564 · Zbl 1015.62064 · doi:10.1016/S0378-3758(02)00173-8
[16] Christensen WE, Schauer JJ, Lingwall JW (2006) Iterated confirmatory factor analysis for pollution source apportionment. EnvironMetrics 17:663–681 · doi:10.1002/env.782
[17] Clements ACA, Garba A, Sacko M, Touré S, Dembelé R, Landouré A et al (2008) Mapping the probability of schistosomiasis and associated uncertainty, West Africa. Emerg Infect Dis 14:1629–1632 · doi:10.3201/eid1410.080366
[18] Congdon P (2010) Estimating prevalence of coronary heart disease for small areas using collateral indicators of morbidity. Int J Environ Res Public Health 7:164–177 · doi:10.3390/ijerph7010164
[19] Cook D, Cressie N, Majure J, Symanzik J (1994) Some dynamic graphics for spatial data (with multiple attributes) in GIS. In: Dutter R, Grossman W (eds) Proceedings in computational statistics, 11th symposium, Vienna, Austria, 1994. Physica-Verlag, Heidelberg, pp 105–119
[20] Cressie NA (1993) Statistics for spatial data, 2nd edn. Wiley, New York
[21] Desbarats AJ, Dimitrakopoulos R (2000) Pore-size distributions using min/max autocorrelation factors. Math Geol 32:919–992 · doi:10.1023/A:1007570402430
[22] Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. J R Stat Soc, Ser C, Appl Stat 47:299–326 · Zbl 0904.62119 · doi:10.1111/1467-9876.00113
[23] Dray S, Said S, Debias F (2008) Spatial ordination of vegetation data using a generalization of Wartenberg’s multivariate spatial correlation. J Veg Sci 19:45–56 · doi:10.3170/2007-8-18312
[24] Eickhoff JC, Amemiya Y (2003) Generalized linear latent variable modeling for multi-group studies. Technical Report RC22981, Thomas J. Watson Research Center, IBM, Yorktown Heights, NY · Zbl 1072.62059
[25] Fan SH, Burstyn I, Senthilselvan A (2010) Spatiotemporal modeling of ambient sulfur dioxide concentrations in rural Western Canada. Environ Model Assess 15:137–146 · doi:10.1007/s10666-008-9184-0
[26] Finley AO, Sang H, Banerjee S, Gelfand AE (2009) Improving the performance of predictive process modeling for large datasets. Comput Stat Data Anal 53:2873–2884 · Zbl 1453.62090 · doi:10.1016/j.csda.2008.09.008
[27] Flury B (1988) Common principal components, and related multivariate models. Wiley, New York · Zbl 1081.62535
[28] Fuentes M (2002) Spectral methods for nonstationary spatial processes. Biometrika 89:197–210 · Zbl 0997.62073 · doi:10.1093/biomet/89.1.197
[29] Fuentes M (2007) Approximate likelihood for large irregularly spaced spatial data. J Am Stat Assoc 102:321–331 · Zbl 1284.62589 · doi:10.1198/016214506000000852
[30] Fuller W (1987) Measurement error models. Wiley, New York · Zbl 0800.62413
[31] Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc 125:723–757 · doi:10.1002/qj.49712555417
[32] Gelfand AE, Vounatsou P (2003) Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4:11–25 · Zbl 1142.62393 · doi:10.1093/biostatistics/4.1.11
[33] Gelfand AE, Schmidt AM, Banerjee S, Sirmans CF (2004) Nonstationary multivariate process modeling through spatially varying coregionalization. Test 13:150 · Zbl 1069.62074 · doi:10.1007/BF02595775
[34] Gneiting T (2002) Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 97:590–601 · Zbl 1073.62593 · doi:10.1198/016214502760047113
[35] Goovaerts P (1993) Spatial orthogonality of the principal components computed from coregionalised variables. Math Geol 25:281–302 · Zbl 0970.86537 · doi:10.1007/BF00901420
[36] Goulard M, Voltz M (1992) Linear coregionalization model: tools for estimation and choice of multivariate variograms. Math Geol 24:269–286 · doi:10.1007/BF00893750
[37] Grimes DIF, Pardo-Iguzquiza E (2010) Geostatistical analysis of rainfall. Geogr Anal 42:136–160 · doi:10.1111/j.1538-4632.2010.00787.x
[38] Grunsky EC (2010) The interpretation of geochemical survey data. Geochem, Explor Environ Anal 10:27–74 · doi:10.1144/1467-7873/09-210
[39] Grunsky E, Agterberg F (1992) Spatial relationships of multivariate data. Math Geol 24:731–758 · doi:10.1007/BF00894238
[40] Haskard KA, Lark RM (2009) Modelling non-stationary variance of soil properties by tempering an empirical spectrum. Geoderma 153:18–28 · doi:10.1016/j.geoderma.2009.07.006
[41] Higdon D (1998) A process-convolution approach to modeling temperatures in the North Atlantic Ocean. Environ Ecol Stat 5:173–190 · doi:10.1023/A:1009666805688
[42] Higdon D (2002) Space and space-time modeling using process convolutions. In: Anderson C, Barnett V, Chatwin PC, El-Shaarawi AH (eds) Quantitative methods for current environmental issues. Springer, New York, pp 37–56 · Zbl 1255.86016
[43] Higdon D, Swall J, Kern J (1999) Non-stationary spatial modeling. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics, vol 6. Oxford University Press, Oxford, pp 761–768 · Zbl 0982.62079
[44] Hossain M, Laditka JN (2009) Using hospitalization for ambulatory care sensitive conditions to measure access to primary health care: an application of spatial structural equation modeling. Int J Health Geogr 8:51 · doi:10.1186/1476-072X-8-51
[45] Jacob BG, Burkett-Cadena ND, Luvall JC, Parcak SH, McClure CJ, Estep LK, Hill GE, Cupp EW, Novak RJ, Unnasch TR (2010) Developing GIS-based eastern equine encephalitis vector-host models in Tuskegee, Alabama. Int J Health Geogr 9:12 · doi:10.1186/1476-072X-9-12
[46] Krzanowski WJ (2000) Principles of multivariate analysis: a user’s perspective. Oxford University Press, Oxford (rev ed)
[47] Krzanowski WJ, Bailey TC (2007) Extraction of spatial features using factor methods illustrated on stream sediment data. Math Geol 39:69–85 · Zbl 1332.86012 · doi:10.1007/s11004-006-9067-3
[48] Larocque G, Dutilleul P, Pelletier B, Fyles JW (2007) Characterization and quantification of uncertainty in coregionalization analysis. Math Geol 39:263–288 · Zbl 1158.62040 · doi:10.1007/s11004-007-9086-8
[49] Leonte D, Nott DJ (2006) Bayesian spatial modelling of gamma ray count data. Math Geol 38:135–154 · Zbl 1138.86313 · doi:10.1007/s11004-005-9008-6
[50] Li B, Genton MG, Sherman M (2007) A nonparametric assessment of properties of space-time covariance functions. J Am Stat Assoc 102:736–744 · Zbl 1172.62311 · doi:10.1198/016214507000000202
[51] Li B, Genton MG, Sherman M (2008) Testing the covariance structure of multivariate random fields. Biometrika 95:813–829 · Zbl 1437.62528 · doi:10.1093/biomet/asn053
[52] Lindenmayer JP, Khan A, Iskander A, Abad MT, Parker B (2007) A randomized controlled trial of olanzapine versus haloperidol in the treatment of primary negative symptoms and neurocognitive deficits in schizophrenia. J Clin Psychiat 368–379
[53] Loranty MM, Mackay DS, Ewers BE, Adelman JD, Kruger EL (2008) Environmental drivers of spatial variation in whole-tree transpiration in an aspen-dominated upland-to-wetland forest gradient. Water Resour Res 44(2):W02441
[54] Majumdar A, Gelfand AE (2007) Multivariate spatial modeling for geostatistical data using convolved covariance functions. Math Geol 39:225–245 · Zbl 1126.86007 · doi:10.1007/s11004-006-9072-6
[55] Majumdar A, Paul D, Bautista D (2009) A generalized convolution model for multivariate nonstationary spatial processes. Dept. Mathematics and Statistics, Arizona State University, Tempe, USA · Zbl 1187.62153
[56] Majure JJ, Cressie N (1997) Dynamic graphics for exploring spatial dependence in multivariate spatial data. J Geogr Syst 4:131–158
[57] Mardia KV, Goodall CR (1993) Spatial-temporal analysis of multivariate environmental monitoring data. In: Patil GP, Rao CR (eds) Multivariate environmental statistics. Amsterdam, Elsevier, pp 347–386 · Zbl 0825.62996
[58] McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, New York · Zbl 0744.62098
[59] Oud JHL, Folmer H (2008) A structural equation approach to models with spatial dependence. Geogr Anal 40:152–166 · doi:10.1111/j.1538-4632.2008.00717.x
[60] Paulitz TC, Zhang H, Cook RJ (2003) Spatial distribution of Rhizoctonia oryzae and rhizoctonia root rot in direct-seeded cereals. Can J Plant Pathol 25:295–303 · doi:10.1080/07060660309507082
[61] Pelletier B, Dutilleul P, Larocque G, Fyles JW (2009) Coregionalization analysis with a drift for multi-scale assessment of spatial relationships between ecological variables 1 and 2. Environ Ecol Stat 16:439–494 · doi:10.1007/s10651-008-0090-z
[62] Raso G, Vounatsou P, Gosoniu L, Tanner M, N’goran EK, Utzinger J (2006) Risk factors and spatial patterns of hookworm infection among schoolchildren in a rural area of western Cote d’ Ivoire. Int J Parasitol 36:201–210 · doi:10.1016/j.ijpara.2005.09.003
[63] Reich BJ, Fuentes M, Burke J (2009) Analysis of the effects of ultrafine particulate matter while accounting for human exposure. EnvironMetrics 20:131–146 · doi:10.1002/env.915
[64] Royle JA, Berliner LM (1999) A hierarchical approach to multivariate spatial modeling and prediction. J Agric Biol Environ Stat 4:29–56 · doi:10.2307/1400420
[65] Royle JA, Wikle CK (2005) Efficient statistical mapping of avian count data. Environ Ecol Stat 12:225–243 · doi:10.1007/s10651-005-1043-4
[66] Sahu SK, Challenor P (2008) A space-time model for joint modeling of ocean temperature and salinity levels as measured by Argo floats. EnvironMetrics 19:509–528 · doi:10.1002/env.895
[67] Saltyte-Benth J, Ducinskas K (2005) Linear discriminant analysis of multivariate spatial-temporal regressions. Scand J Stat 32:281–294 · Zbl 1089.62074 · doi:10.1111/j.1467-9469.2005.00421.x
[68] Seiter K, Hensen C, Schröter E, Zabel M (2004) Organic carbon content in surface sediments–defining regional provinces. Deep-Sea Res, Part 1, Oceanogr Res Pap 51:2001–2026 · doi:10.1016/j.dsr.2004.06.014
[69] Sicard E, Sabatier R, Niel H, Cadier E (2002) A new approach in space-time analysis of multivariate hydrological data: application to Brazil’s Nordeste region rainfall. Water Resour Res 38:1319
[70] Switzer P (1985) Min/Max autocorrelation factors for multivariate spatial imagery. In: Comp sci stat, proceedings of the 16th symposium on the interface, pp 13–16
[71] Thogmartin WE, Sauer JR, Knutson MG (2004) A hierarchical spatial model of avian abundance with application to Cerulean Warblers. Ecol Appl 14:1766–1779 · doi:10.1890/03-5247
[72] Thogmartin WE, Knutson MG, Sauer JR (2006) Predicting regional abundance of rare grassland birds with a hierarchical spatial count model. Condor 108:25–46 · doi:10.1650/0010-5422(2006)108[0025:PRAORG]2.0.CO;2
[73] Thompson JA, Brown SE, Riddle WT, Seahorn JC, Cohen ND (2005) Use of a Bayesian risk-mapping technique to estimate spatial risks for mare reproductive loss syndrome in Kentucky. Am J Vet Res 66:17–20 · doi:10.2460/ajvr.2005.66.17
[74] Vargas-Guzmán JA (2008) Transitive geostatistics for stepwise modeling across boundaries between rock regions. Math Geosci 40:861–873 · Zbl 1189.86016 · doi:10.1007/s11004-008-9166-4
[75] Vargas-Guzmán JA, Warrick AW, Myers DE (2002) Coregionalization by linear combination of nonorthogonal components. Math Geol 34:405–419 · Zbl 1017.86003 · doi:10.1023/A:1015078911063
[76] Ver Hoef J, Barry R (1998) Constructing and fitting models for cokriging and multivariable spatial prediction. J Stat Plan Inference 69:275–294 · Zbl 0935.62110 · doi:10.1016/S0378-3758(97)00162-6
[77] Ver Hoef J, Cressie N, Barry R (2004) Flexible spatial models for kriging and cokriging using moving averages and the Fast Fourier Transform. J Comput Graph Stat 13:265–282 · doi:10.1198/1061860043498
[78] Vounatsou P, Raso G, Tanner M, N’goran EK, Utzinger J (2009) Bayesian geostatistical modelling for mapping schistosomiasis transmission. J Parasitol 136:1695–1705 · doi:10.1017/S003118200900599X
[79] Wackernagel H (2003) Multivariate geostatistics: an introduction with applications, 2nd edn. Springer, Berlin · Zbl 1015.62128
[80] Wang F, Wall MM (2003) Generalised common spatial factor models. Biostatistics 4:569–582 · Zbl 1197.62067 · doi:10.1093/biostatistics/4.4.569
[81] Wikle CK, Cressie N (1999) A dimension-reduced approach to space-time Kalman filtering. Biometrika 86:815–829 · Zbl 0942.62114 · doi:10.1093/biomet/86.4.815
[82] Wikle CK, Berliner LM, Cressie N (1998) Hierarchical Bayesian space-time models. Environ Ecol Stat 5:117–154 · doi:10.1023/A:1009662704779
[83] Wu KS, Huo X, Zhu GH (2008) Relationships between esophageal cancer and spatial environment factors by using Geographic Information System. Sci Total Environ 393:219–225 · doi:10.1016/j.scitotenv.2007.12.029
[84] Yu HL, Chiang CT, Lin SD, Chang TK (2010) Spatiotemporal analysis and mapping of oral cancer risk in Changhua County (Taiwan): an application of generalized Bayesian maximum entropy method. Ann Epidemiol 20:99–107 · doi:10.1016/j.annepidem.2009.10.005
[85] Zhang H (2007) Maximum-likelihood estimation for multivariate spatial linear coregionalization models. EnvironMetrics 18:125–139 · doi:10.1002/env.807
[86] Zhu J, Eickhoff JC, Yan P (2005) Generalized linear latent variable models for repeated measures of spatially correlated multivariate data. Biometrics 61:674–683 · Zbl 1079.62070 · doi:10.1111/j.1541-0420.2005.00343.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.