×

zbMATH — the first resource for mathematics

Strongly convex metrics in cells. (English) Zbl 0171.21503

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. H. Bing, A convex metric for a locally connected continuum, Bull. Amer. Math. Soc. 55 (1949), 812 – 819. · Zbl 0035.10801
[2] R. H. Bing, A convex metric with unique segments, Proc. Amer. Math. Soc. 4 (1953), 167 – 174. · Zbl 0050.38503
[3] E. Dyer and M.-E. Hamstrom, Completely regular mappings, Fund. Math. 45 (1958), 103 – 118. · Zbl 0083.38704
[4] S. Lefschetz, Topics in topology, Ann. of Math. Studies 10 (1949). · Zbl 0061.39303
[5] A. Lelek and W. Nitka, On convex metric spaces. I, Fund. Math. 49 (1960/1961), 183 – 204. · Zbl 0171.21601
[6] Michael C. McCord, Spaces with acyclic point complements, Proc. Amer. Math. Soc. 17 (1966), 886 – 890. · Zbl 0142.21304
[7] Karl Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100 (1928), no. 1, 75 – 163 (German). · JFM 54.0622.02 · doi:10.1007/BF01448840 · doi.org
[8] K. Sieklucki, On a contractible polytope which cannot be metrized in the strong convex manner, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 6 (1958), 361 – 364. · Zbl 0088.38302
[9] F. Taranzos, Convex metric spaces homeomorphic to the n-cube (abstract), Notices Amer. Math. Soc. 14 (1967), 545.
[10] W. White, A 2-complex is collapsible if and only if it admits a strongly convex metric, Notices Amer. Math. Soc. 14 (1967), 848. · Zbl 0197.19602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.