×

zbMATH — the first resource for mathematics

The geometry of Minkowski spaces – a survey. II. (English) Zbl 1080.52005
The authors continue their useful survey over various aspects of the geometry of Minkowski spaces (finite-dimensional Banach spaces). While the first part [Expo. Math. 19, No. 2, 97–142 (2001; Zbl 0984.52004)], written together with G. Weiß, was mainly restricted to two-dimensional spaces, this second part is devoted to higher dimensions. After a fairly complete survey over bodies of constant Minkowski width, the following topics are treated: generalized convexity notions of importance for Minkowski spaces (with \(d\)-convexity in the foreground), bisectors and Voronoi diagrams in Minkowski spaces.
This thoroughly prepared survey collects more than 300 references.

MSC:
52A21 Convexity and finite-dimensional Banach spaces (including special norms, zonoids, etc.) (aspects of convex geometry)
46B20 Geometry and structure of normed linear spaces
52-02 Research exposition (monographs, survey articles) pertaining to convex and discrete geometry
52A01 Axiomatic and generalized convexity
Software:
Voronoi
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aigner, M.; Ziegler, G.M., Proofs from the book, (2001), Springer, MR 2001j:00001 · Zbl 0978.00002
[2] Agarwal, P.K.; Sharir, M., Davenport-schinzel sequences and their geometric applications, (), 1-47 · Zbl 0952.68148
[3] Aichholzer, O.; Aurenhammer, F., Straight skeletons for general polygonal figures in the plane, (), 7-21, Kiev · Zbl 0955.52001
[4] Aichholzer, O.; Aurenhammer, F.; Alberts, D.; Gärtner, B., A novel type of skeletons for polygons, J. ucs, 1, 752-761, (1995), MR 97c:52028 · Zbl 0943.68171
[5] Aleksandrov, A.D.; Zalgaller, V.A., Two-dimensional manifolds of bounded curvature. (foundations of the intrinsic geometry of surfaces.), (), MR 27 #1911 · Zbl 0146.44103
[6] Alsina, C.; Guijarro, P.; Tomás, M.S., Characterizations of inner product structures involving the radius of the inscribed or circumscribed circumference, Arch. math. (Brno), 32, 233-239, (1996), MR 97j:46017 · Zbl 0909.46020
[7] Alsina, C.; Guijarro, P.; Tomás, M.S., Some remarkable lines of triangles in real normed spaces and characterizations of inner product structures, Aequationes math., 54, 234-241, (1997), MR 99b:39031 · Zbl 0906.39012
[8] Amir, D., Characterizations of inner product spaces, (1986), Birkhäuser-Verlag Moscow, MR 88m:46001 · Zbl 0617.46030
[9] Andalafte, E.Z.; Blumenthal, L.M., Metric characterizations of Banach and Euclidean spaces, Fund. math., 55, 23-55, (1964), MR 29 #2625 · Zbl 0196.13702
[10] Andalafte, E.Z.; Freese, R.W., New metric characterizations of Banach spaces, Houston J. math., 11, 147-150, (1985), MR 86j:51024 · Zbl 0577.46010
[11] Andalafte, E.Z.; Freese, R.W., Characterization of inner product spaces in V- and L-spaces, J. geom., 33, 3-10, (1988), MR 89m:51027 · Zbl 0661.46018
[12] Andalafte, E.; Freese, R., Weak homogeneity of metric Pythagorean orthogonality, J. geom., 56, 3-8, (1996), MR 97d:51022 · Zbl 0947.52001
[13] Andalafte, E.Z.; Valentine, J.E., Criteria for unique metric lines in Banach spaces, (), 367-370, MR 47 #2499 · Zbl 0237.46020
[14] Aurenhammer, F., Voronoi diagrams — a survey of a fundamental geometric data structure, ACM computing surveys, 23, 345-405, (1991)
[15] Aurenhammer, F.; Klein, R., Voronoi diagrams, (), 201-290, Chapter 5 · Zbl 0995.65024
[16] G. Averkov: Constant Minkowskian width in terms of double normals, Journal of Geometry, to appear. · Zbl 1031.52003
[17] G. Averkov: A monotonicity lemma for bodies of constant Minkowskian width, 5 pp., submitted. · Zbl 1031.52003
[18] G. Averkov: On the geometry of simplices in Minkowski spaces, 12 pp., submitted. · Zbl 1055.52004
[19] G. Averkov, H. Martini: A characterization of constant width in Minkowski planes, 10 pp., submitted. · Zbl 1071.52001
[20] Barequet, G.; Dickerson, M.T.; Goodrich, M.T., Voronoi diagrams for convex polygon-offset distance functions, Discrete comput. geom., 25, 271-291, (2001), MR 2002k:52034 · Zbl 0996.68218
[21] Baronti, M.; Papini, P.L., Diameters, centers and diametrically maximal sets, Rend. circ. mat. Palermo, 38, 11-24, (1995), MR 96f:52009 · Zbl 0842.52004
[22] Bavaud, F., Adjoint transform, overconvexity and sets of constant width, Trans. amer. math. soc., 333, 315-324, (1992), MR 92k:52002 · Zbl 0760.52004
[23] Beem, J.K., A bisector characterization of indefinite inner products, Geom. dedicata, 5, 453-458, (1976), MR 55 #13222 · Zbl 0344.46054
[24] Beretta, L.; Maxia, A., Insiemi convessi e orbiformi, Univ. roma e ist. naz. alta mat. rend. mat., 1, 5, 1-64, (1940), MR 1,264g · Zbl 0022.40101
[25] Blanc, E., Sur une généralisation des domaines d’épaisseur constante, C. R. acad. sci. Paris, 219, 662-663, (1944), MR 7,475f · Zbl 0061.37907
[26] Blank, M., Characterization of spaces whose B-convex bodies are intersections of balls, Bull. Polish acad. sci. math., 40, 185-187, (1992), MR 97d:46012 · Zbl 0834.46010
[27] Blumenthal, L.M., Distance geometries: A study of the development of abstract metrics, (1938), University of Missouri Amsterdam · JFM 64.1329.01
[28] Blumenthal, L.M., Theory and applications of distance geometry, (), MR 42 #3678. (1st ed. Clarendon Press, Oxford, 1953. MR 14,1009a)
[29] Blumenthal, L.M.; Menger, K., Studies in geometry, (1970), W. H. Freeman and Co. New York, MR 42 #8370 · Zbl 0204.53401
[30] Bochnak, J.; Coste, M.; Roy, M.-F., Real algebraic geometry, (), MR 2000a:14067 · Zbl 0633.14016
[31] Bogdewicz, A., Some metric properties of hyperspaces, Demonstratio math, 33, 135-149, (2000) · Zbl 0948.54015
[32] Boissonnat, J.-D.; Sharir, M.; Tagansky, B.; Yvinec, M., Voronoi diagrams in higher dimensions under certain polyedral distance functions, Discrete comput. geom., 19, 485-519, (1998), MR 99c:52020 · Zbl 0897.68113
[33] Boltyanski, V.G., The partitioning of plane figures into parts of smaller diameter (in Russian), (), 253-263, MR 42 #2366
[34] Boltyanski, V.; Martini, H., Fixing and hindering systems in combinatorial geometry, Beiträge algebra geom, 40, 551-563, (1999), MR 2000i:52007 · Zbl 0962.52001
[35] Boltyanski, V.; Martini, H.; Soltan, P.S., Star-shaped sets in normed spaces, Discrete comput. geom., 15, 63-71, (1996), MR 97c:52009 · Zbl 0847.52003
[36] Boltyanski, V.; Martini, H.; Soltan, P.S., Excursions into combinatorial geometry, (1997), Springer Berlin, MR 98b:52001 · Zbl 0877.52001
[37] Boltyanski, V.G.; Soltan, P.S., Combinatorial geometry of various classes of convex sets (in Russian), (1978), Štiinca Berlin, MR 80g:52001
[38] Boltyanski, V.G.; Soltan, P.S., Combinatorial geometry and convexity classes (in Russian), Uspehi mat. nauk, 33, no. 1, 3-42, (1978), MR 58 #7392
[39] Boltyanski, V.G.; Soltan, V.P., Borsuk’s problem (in Russian), Mat. zametki, 22, 621-631, (1977), MR 58 #2586 · Zbl 0368.52010
[40] Bonnesen, T.; Fenchel, W., Theorie der konvexen Körper, (), Zbl. 8,77 · Zbl 0008.07708
[41] Brown, A.L., Suns in normed linear spaces which are finite-dimensional, Math. ann., 279, 87-101, (1987), MR88k:46015 · Zbl 0607.41027
[42] Bumcrot, R.J., Geometrical concepts in normed linear spaces, Portugal. math., 26, 1-6, (1967), MR 40 #6381 · Zbl 0183.40402
[43] Bumcrot, R.J., Algebraic versus metric concepts in a normed linear space, Simon stevin, 41, 252-255, (1967/1968), MR 38 #3714 · Zbl 0159.41701
[44] Busemann, H., On Leibniz’s definition of planes, Amer. J. math., 63, 101-111, (1941), MR 2,258e · JFM 67.0690.01
[45] Busemann, H., Metric methods in Finsler spaces and in the foundations of geometry, (), MR 4,109e · Zbl 0063.00672
[46] Busemann, H., Local metric spaces, Trans. amer. math. soc., 56, 200-274, (1944), MR 6,97f · Zbl 0061.37403
[47] Busemann, H., The geometry of geodesics, (1955), Academic Press Inc. Princeton, NJ, MR 17,779a · Zbl 0112.37002
[48] Busemann, H., Recent synthetic differential geometry, (1970), Springer New York, NY, MR 45 #5936 · Zbl 0194.53701
[49] Busemann, H., Planes with analogues to Euclidean angular bisectors, Math. scand., 36, 5-11, (1975), MR 51 #8961 · Zbl 0299.50002
[50] Busemann, H., Remark on “planes with analogues to Euclidean angular bisectors”, Math. scand., 38, 81-82, (1976), MR 53 #9042 · Zbl 0324.50001
[51] Busemann, H.; Phadke, B.B., Spaces with distinguished geodesics, (1987), Marcel Dekker, Inc. New York-Berlin, MR 88g:53075 · Zbl 0631.53001
[52] Buter, J., Überkonvexe mengen in der ebene, (), 756-762, Zbl. 20.07602 · JFM 64.0729.05
[53] Calder, J.R., A property of l_p spaces, (), 202-206, MR 32 #8112 · Zbl 0141.11904
[54] Chai, Y.D.; Il Kim, Yong, Geometric inequalities in the Minkowski plane, The youngnam math. J., 1, 1-7, (1994)
[55] Chai, Y.D.; Il Kim, Yong, Curves of constant relative breadth, Kyungpook math. J., 37, 365-370, (1997), MR 98k:52010 · Zbl 0937.53003
[56] Chakerian, G.D., Sets of constant width, Pacific J. math., 19, 13-21, (1966), MR 34 #4986 · Zbl 0142.20702
[57] Chakerian, G.D., Sets of constant relative width and constant relative brightness, Trans. amer. math. soc., 129, 26-37, (1967), MR 35 #3545 · Zbl 0161.41606
[58] Chakerian, G.D., Mixed volumes and geometric inequalities, (), 57-62, MR 83g:52010 · Zbl 0487.52008
[59] Chakerian, G.D., The number of diameters through a point inside an oval, Rev. unión matem. Argentina, 29, 282-290, (1984)
[60] Chakerian, G.D.; Groemer, H., Convex bodies of constant width, (), 49-96, MR 85f:52001 · Zbl 0518.52002
[61] Chen, D.; Lin, B.-L., On B-convex and Mazur sets of Banach spaces, Bull. Polish acad. sci. math., 43, 191-198, (1995), MR 97f:46027 · Zbl 0836.46009
[62] Chew, L.P., Near-quadratic bounds for the L_1 Voronoi diagram of moving points, Comput. geom., 7, 73-80, (1997), MR 97m:68194 · Zbl 0870.68148
[63] Chew, L.P.; Drysdale, R.L., Voronoi diagrams based on convex distance functions, (), 235-244
[64] Chew, L.P.; Kedem, K.; Sharir, M.; Tagansky, B.; Welzl, E., Voronoi diagrams of lines in 3-space under polyhedral convex distance functions, (), Journal of algorithms, 29, 238-255, (1998), 1995. MR 96e:68128. Also in · Zbl 0916.68180
[65] Corbolan, A.G.; Mazón, M.; Recio, T., Geometry of bisectors for strictly convex distances, Internat. J. comput. geom. appl., 6, 45-58, (1996), MR 97b:52001 · Zbl 0851.68109
[66] Corbolan, A.G.; Mazón, M.; Recio, T.; Santos, F., On the topological shape of planar Voronoi diagrams, (), 109-115
[67] Dalla, L.; Tamvakis, N.K., Sets of constant width and diametrically complete sets in normed spaces, Bull. soc. math. grèce (N.S.), 26, 27-39, (1985), MR 87i:52002 · Zbl 0619.52001
[68] Danelich, I.A., Normed spaces which satisfy apollonius’ theorem, Mat. zametki, English translation math. notes, 20, 696-699, (1976) · Zbl 0343.46013
[69] Danzer, L., Über durchschnittseigenschaften n-dimensionaler kugelfamilien, J. reine angew. math., 208, 181-203, (1961), MR 25 #5453 · Zbl 0109.14904
[70] Danzer, L.; Grünbaum, B.; Klee, V., Helly’s theorem and its relatives, (), 101-180, MR 28 #524 · Zbl 0132.17401
[71] Das, P.P., The discrete version of a geometric duality theorem, J. geom., 38, 23-38, (1990), MR 91h:51017 · Zbl 0717.51011
[72] Day, M.M., Some characterizations of inner-product spaces, Trans. amer. math. soc., 62, 320-337, (1947), MR 9,192c · Zbl 0034.21703
[73] Day, M.M., Normed linear spaces, (), MR 49 #9588 · Zbl 0082.10603
[74] Delaunay, B., Sur la sphère vide. A la memoire de georges Voronoi, Izv. akad. nauk SSSR, otdelenie mat. i estestv. nauk, 7, 793-800, (1934) · JFM 60.0946.06
[75] Diminnie, C.R.; White, A.G., Remarks on strict convexity and betweenness postulates, Demonstratio math., 14, 209-220, (1981), MR 82k:52004 · Zbl 0459.46008
[76] Diminnie, C.; White, A., A note on strict convexity and straight lines in normed spaces, Demonstratio math., 10, 827-829, (1977), MR 57 #13452 · Zbl 0372.46012
[77] Dinghas, A., Verallgemeinerungen eines blaschkeschen satzes über konvexe Körper konstanter breite, Rev. math. union interbalkan, 3, 17-20, (1940), MR 2,261g · JFM 66.0911.01
[78] Dirichlet, P.G.L., Über die reduction der positiven quadratischen formen mit drei unbestimmten ganzen zahlen, J. reine angew. math., 40, 209-227, (1850)
[79] Doliwka, K., On five points in the boundary of a plane convex body pairwise in at least unit relative distances, J. geom., 53, 76-78, (1995), MR 96g:52013 · Zbl 0831.52001
[80] ()
[81] Durier, R.; Michelot, C., Geometrical properties of the Fermat-Weber problem, Europ. J. oper. res., 20, 332-343, (1985), MR 87a:90048 · Zbl 0564.90013
[82] N. Düvelmeyer: A characterization of Radon curves, J. Geom, to appear.
[83] Eckhoff, J., Helly, Radon, and Carathéodory type theorems, (), 389-448, MR 94k:52010 · Zbl 0791.52009
[84] Eggleston, H.G., Notes on Minkowski geometry I: relations between the circumradius, diameter, inradius and minimal width of a convex set, J. London math. soc., 33, 76-81, (1958), MR 20 #1281 · Zbl 0082.15704
[85] Eggleston, H.G., Sets of constant width in finite dimensional Banach spaces, Israel J. math., 3, 163-172, (1965), MR 34 #583 · Zbl 0166.17901
[86] Ewald, G., Von klassen konvexer Körper erzeugte hilberträume, Math. ann., 162, 140-146, (1965/1966), MR 32 #8255 · Zbl 0141.39002
[87] Ewald, G.; Shephard, G.C., Normed vector spaces consisting of classes of convex sets, Math. Z., 91, 1-19, (1966), MR 32 #4597 · Zbl 0141.39003
[88] de Castro Feitosa, E., Sets of constant width and inequalities in Minkowski spaces, ()
[89] Fortune, S., Voronoi diagrams and Delaunay triangulations, (), 377-388, MR 2000j:52001 · Zbl 0907.68190
[90] Franchetti, C., Relationship between the jung constant and a certain projection constant in Banach spaces, Ann. univ. ferrara sez. VII (N.S.), 23, 39-44, (1977), MR 58 #12292 · Zbl 0367.46016
[91] Fréchet, M., Définitions de la somme et du produit par scalaire en termes de distance, Ann. sci. école norm. sup., 75, 3, 223-255, (1958), MR 21 #4394 · Zbl 0083.33702
[92] Freese, R.W.; Andalafte, E.Z., Criteria for unique lines, J. geom., 24, 198-201, (1985), MR 86h:52002 · Zbl 0582.54018
[93] Freese, R.W.; Diminnie, C.R.; Andalafte, E.Z., Angle bisectors in normed linear spaces, Math. nachr., 131, 167-173, (1987), MR 89c:46032 · Zbl 0639.46017
[94] Freese, R.; Murphy, G., The CMP and Banach spaces with unique metric lines, J. geom., 14, 50-58, (1980), MR 81g:51008 · Zbl 0438.51014
[95] Freese, R.; Murphy, G., Strictly convex spheres in V-spaces, Fund. math., 117, 109-115, (1983), MR 84j:51027 · Zbl 0548.46015
[96] Fullerton, R.E., Integral distances in Banach spaces, Bull. amer. math. soc., 55, 901-905, (1949), MR 11,369c · Zbl 0035.07104
[97] Funk, P., Über die geometrien, bei denen die geraden die kürzesten linien sind und die äquidistanten zu einer geraden wieder gerade sind, Monatsh. math. phys., 37, 153-158, (1930) · JFM 56.0631.01
[98] Gardner, R.J., Geometric tomography, (1995), Cambridge University Press Boca Raton, FL, MR 96j:52006 · Zbl 1042.52501
[99] Gariepy, R.; Pepe, W.D., On the level sets of a distance function in a Minkowski space, (), 255-259, MR 44 #4646 · Zbl 0228.57005
[100] German, L.F.; Soltan, P.S., the separation property of d-convex sets (in Russian), Prikl. mat. i programmirovanie, 12, 49-61, (1974), MR 52 #15246
[101] German, L.F.; Soltan, P.S.; Soltan, V.P., some properties of d-convex sets (in Russian), Dokl. akad. nauk SSSR, English transl. soviet math. dokl., 14, 1566-1570, (1973), MR 48 #12296. · Zbl 0295.52010
[102] German, L.F.; Soltan, V.P., certain properties of d-convex sets (in Russian), Prikl. mat. i programmirovanie, 10, 47-61, (1973), MR 48 #12320
[103] Ghandehari, M., Geometric inequalities in the Minkowski plane, () · Zbl 0869.46004
[104] Ghandehari, M., Polar duals of convex bodies, (), 799-808, MR 92b:52015 · Zbl 0741.52011
[105] Ghandehari, M.; O’Neill, E.J., Self-circumference of rotors, Acta math. hungar., 79, 179-190, (1998), MR 99c:52009 · Zbl 0910.52004
[106] Giesy, D.P., On a convexity condition in normed linear spaces, Trans. amer. math. soc., 125, 114-146, (1966), MR 34 #4866 · Zbl 0183.13204
[107] Glogovskii, V.V., bisectors on the Minkowski plane with norm (|x|^p + |y|p) (in Ukrainian), Visnik lviv. politehn. inst., 44, 192-198, (1970), 218. MR 45 #2597
[108] Glogovskii, V.V., inversion of lines in the metric g^p = σ|xi|p (in ukrainian, Russian summary), Visnik lviv. politehn. inst., 87, 131-136, (1974), 162. MR 53 #6410
[109] Goła̧b, S.; Härlen, H., Minkowskische geometrie I und II, Monatsh. math. phys., 38, 387-398, (1931) · JFM 57.0968.09
[110] Goodey, P.R., Homothetic ellipsoids, (), 25-34, MR 84e:52006 · Zbl 0515.52003
[111] Goodey, P.R.; Woodcock, M.M., Intersections of convex bodies with their translates, (), 289-296, MR 84e:52014 · Zbl 0502.52004
[112] Groemer, H., On complete convex bodies, Geom. dedicata, 20, 319-334, (1986), MR 87h:52008 · Zbl 0587.52002
[113] Gromov, M.L., Simplexes inscribed in a hypersurface, Mat. zametki, English transl. math. notes, 5, 52-56, (1969), MR 39 #6220 · Zbl 0181.25103
[114] de Groot, J., Some special metrics in general topology, (), 283-286, MR 21 #3828 · Zbl 0090.38704
[115] Gruber, P., Über kennzeichnende eigenschaften von euklidischen Räumen und ellipsoiden. I, J. reine angew. math., 265, 61-83, (1974), MR 49 #3694 · Zbl 0273.52001
[116] Gruber, P., Über kennzeichnende eigenschaften von euklidischen Räumen und ellipsoiden. II, J. reine angew. math., 270, 123-142, (1974), MR 54 #5974 · Zbl 0291.52004
[117] Gruber, P.M., Über kennzeichnende eigenschaften von ellipsoiden und euklidischen Räumen. III, Monatsh. math., 78, 311-340, (1974), MR 57 #7381 · Zbl 0291.52005
[118] Gruber, P.M., Fixpunktmengen von kontraktionen in endlich-dimensionalen normierten Räumen, Geom. dedicata, 4, 179-198, (1975), MR 57 #1279 · Zbl 0318.47031
[119] Gruber, P.M., Planar Chebyshev sets, (), 184-191, MR 86k:41032
[120] Grünbaum, B., Borsuk’s partition conjecture in Minkowski planes, Bull. res. council Israel, 7F, 25-30, (1957/1958), MR 21 #2209 · Zbl 0086.15202
[121] Grünbaum, B., On a conjecture of hadwiger, Pacific J. math., 11, 215-219, (1961), MR 25 #1492 · Zbl 0131.20003
[122] Grünbaum, B., Borsuk’s problem and related questions, (), 271-282, MR 27 #4134
[123] Grünbaum, B.; Kelly, L.M., Metrically homogeneous sets, Israel J. math., 6, 183-197, (1968), MR 39 #6180 (Corrigendum: Israel J. Math. 8 (1970), 93-95. MR 42 #3679) · Zbl 0164.22901
[124] Guggenheimer, H., Pseudo-Minkowski differential geometry, Ann. mat. pura appl., 70, 4, 305-370, (1965), MR 32 #8295 · Zbl 0134.39705
[125] Guggenheimer, H., Elementary geometry of the unsymmetric Minkowski plane, Rev. unión matem. Argentina, 29, 270-281, (1984)
[126] Guijarro, P.; Tomás, M.S., Perpendicular bisectors and orthogonality, Arch. math. (basel), 69, 491-496, (1997), MR 99a:39059 · Zbl 0917.46015
[127] Hammer, P.C., Convex curves of constant Minkowski breadth, (), 291-304, MR 27 #4136
[128] Hammer, P.C.; Smith, T.J., Conditions equivalent to central symmetry of convex curves, (), 779-785, MR 30 #506 · Zbl 0128.40602
[129] Heil, E., Verschärfungen des vierscheitelsatzes und ihre relativgeometrischen verallgemeinerungen, Math. nachr., 45, 227-241, (1970), MR 42 #5158 · Zbl 0176.18805
[130] Heil, E., Kleinste knovexe Körper gegebener Dicke, (1978), Preprint Nr. 453, Technische Hochschule Darmstadt
[131] Heil, E.; Martini, H., Special convex bodies, (), 347-385, MR 94h:52001 · Zbl 0794.52002
[132] Heppes, A., On a characterization of curves of constant width, Mat. lapok, 10, 133-135, (1959), MR 22 #1846 · Zbl 0086.15402
[133] Hetzelt, L., On suns and cosuns in finite-dimensional normed real vector spaces, Acta math. hungar., 45, 53-68, (1985), MR 86h:41037 · Zbl 0592.41043
[134] Hirakawa, H., An extension of the vectorial domain of an oval for the relative geometry, (), 73-75, 16 · Zbl 0008.40405
[135] Hirakawa, J., The affine breadth and its relation to the relative breadth, Japan. J. math., 12, 43-50, (1935), Zbl. 12,272 · JFM 61.0766.06
[136] Holub, J.R., Rotundity, orthogonality, and characterizations of inner product spaces, Bull. amer. math. soc., 81, 1087-1089, (1975), MR 52 #1263 · Zbl 0317.46022
[137] Horváth, Á.G., On bisectors in Minkowski normed spaces, Acta math. hungar., 89, 233-246, (2000), MR 2003e:52007 · Zbl 0973.52001
[138] Á. G. Horváth: Bisectors in Minkowski 3-space, Beiträge Algebra Geom., to appear.
[139] Hug, D., Measure, curvatures and currents in convex geometry, (1999), University of Freiburg Habilitationsschrift
[140] Hwang, F.K., An O(n log n) algorithm for rectilinear minimum spanning trees, J. assoc. comput. Mach., 26, 177-182, (1979), MR 80c:68029 · Zbl 0395.68064
[141] Icking, C.; Ma, L., A tight bound for the complexity of Voronoi diagrams under polyhedral convex distance functions in 3D, ()
[142] Icking, C.; Klein, R.; Lê, N.-M.; Ma, L., Convex distance functions in 3-space are different, (), Fund. inform., 22, 331-352, (1995) · Zbl 0815.68117
[143] Icking, C.; Klein, R.; Lê, N.-M.; Ma, L.; Santos, F., On bisectors for convex distance functions in 3-space, (), 291-299
[144] Icking, C.; Klein, R.; Ma, L.; Nickel, S.; Weißler, A., On bisectors for different distance functions, (), 291-299, MR 2001j:68128
[145] Icking, C.; Klein, R.; Ma, L.; Nickel, S.; Weißler, A., On bisectors for different distance functions, Discrete appl. math., 109, 139-161, (2001), MR 2001j:65027 · Zbl 0967.68161
[146] James, R.C., Inner products in normed linear spaces, Bull. amer. math. soc., 53, 559-566, (1947), MR 9,42d · Zbl 0041.43701
[147] Janos, L.; Martin, H., Metric characterizations of dimension for separable metric spaces, (), 209-212, MR 57 #13876 · Zbl 0383.54025
[148] Kalisch, G.K.; Straus, E.G., On the determination of points in a Banach space by their distances from the points of a given set, An. acad. brasil ci., 29, 501-519, (1957) · Zbl 0084.33102
[149] Kelly, P.J., On Minkowski bodies of constant width, Bull. amer. math. soc., 55, 1147-1150, (1949), MR 11,387a · Zbl 0038.10401
[150] Kim, Y.I.; Chai, Y.D., Geometric properties of curves in the Minkowski plane, Honam math. J., 19, 107-116, (1997), MR 98g:52003 · Zbl 0960.52001
[151] Kim, Y.I.; Chai, Y.D., Inequalities for the area of constant relative breadth curves, Bull. Korean math. soc., 36, 15-23, (1999), MR 99k:52016 · Zbl 0941.53006
[152] Klee, V., Do infinite-dimensional Banach spaces admit Nice tilings?, Studia sci. math. hungar., 21, 415-427, (1986), MR 89h:52015 · Zbl 0577.52007
[153] Klein, R., Concrete and abstract Voronoi diagrams, (), MR 92f:68180 · Zbl 0699.68005
[154] Klein, R., Abstract Voronoi diagrams and their applications, (), 148-157, MR 90h:68006
[155] Klein, R.; Lingas, A., Manhattonian proximity in a simple polygon, Internat. J. comput. geom. appl., 5, 53-74, (1995), MR 96e:58134 · Zbl 0818.68142
[156] Klein, R.; Wood, D., Voronoi diagrams based on general metrics, (), 281-291, MR 89b:68011
[157] Klein, R.; Mehlhorn, K.; Meiser, S., Randomized incremental construction of abstract Voronoi diagrams, Comput. geom., 3, 157-184, (1993), MR 94j:68301. · Zbl 0797.68153
[158] Kramer, H.; Németh, A.B., Equally spaced points for families of compact sets in Minkowski spaces, Mathematica (cluj), 15, 38, 71-78, (1973), MR 50 #14504. · Zbl 0292.52004
[159] Kramer, H.; Németh, A.B., The application of Brouwer’s fixed point theorem to the geometry of convex bodies (in Romanian), An. univ. timişoara ser. şti. mat., 13, 33-39, (1975), MR 57 #7384. · Zbl 0449.52003
[160] Krause, E.F., Taxicab geometry: an adventure in non-Euclidean geometry, (1987), Original edition: Addison-Wesley, 1975.
[161] Kubota, T.; Hemmi, D., Some problems of minima concerning the oval, J. math. soc. Japan, 5, 372-389, (1953), MR 15,981j. · Zbl 0052.39401
[162] Kühn, U., A randomized parallel algorithm for Voronoi diagrams based on symmetric convex distance functions, Discrete appl. math., 109, 177-196, (2001), MR 2002a:68137. · Zbl 0967.68162
[163] Kupitz, Y.S.; Martini, H., On the weak circular intersection property, Studia sci. math. hungar., 36, 371-385, (2000), MR 2001h:52001. · Zbl 0980.52001
[164] M., Lassak, The Helly dimension and the Carathéodory dimension for finite-dimensional normed spaces (in Russian), Mat. issled., 10, 107-114, (1975), MR 53 #1427. · Zbl 0346.52005
[165] Lassak, M., The Helly dimension for cartesian products of metric space (in Russian), Mat. issled., 10, 159-176, (1975), MR 53 #1425.
[166] Lassak, M., On metric B-convexity for which diameters of any set and its hull are equal, Bull. acad. polon. sci. Sér. sci. math. astronom. phys., 25, 969-975, (1977), MR 57 #1271. · Zbl 0379.52010
[167] Lassak, M., The independence of points in a metric space (in Russian), Fund. math., 96, 53-66, (1977), MR 57 #10613. · Zbl 0374.52007
[168] Lassak, M., Some properties of B-convexity in Minkowski-Banach spaces, Bull. acad. polon. sci. Sér. sci. math., 27, 97-106, (1979), MR 81c:52002. · Zbl 0435.52003
[169] Lassak, M., Some connections between B-convexity and d-convexity, Demonstratio math., 15, 261-270, (1982), MR 85a:52005. · Zbl 0522.52003
[170] Lassak, M., Families of convex sets closed under intersections, homotheties and uniting increasing sequences of sets, Fund. math., 120, 15-40, (1984), MR 86e:52003a. (Errata: Fund. Math. 124 (1984), 287. MR 86e:52003b.) · Zbl 0517.52005
[171] Lassak, M., Terminal subsets of convex sets in finite-dimensional real normal spaces, (), 249-255, MR 87k:52010. · Zbl 0532.52001
[172] Lassak, M., On five points in a plane convex body pairwise in at least unit relative distances, (), 245-247, MR 97a:52008. · Zbl 0822.52001
[173] M. Lassak, H. Martini: Reduced bodies in Minkowski spaces, Acta Math. Hungar., to appear. · Zbl 1084.52004
[174] Lassak, M.; Soltan, V.P., A certain classification of metric spaces from the point of view of d-convexity (in Russian), Mat. issled., 10, 90-106, (1975), MR 53 #1426. · Zbl 0346.52004
[175] Lê, N.-M., On Voronoi diagrams in the L_p-metric in higher dimensions, (), 711-722, MR 95h:68186 · Zbl 0941.68782
[176] Lê, N.-M., On Voronoi diagrams in the L_p-metric in RD, Discrete comput. geom., 16, 177-196, (1996), MR 98b:68191. · Zbl 1050.65020
[177] Lê, N.-M., On non-smooth convex distance functions, Inform. process. lett., 63, 323-329, (1997), MR 98k:68168. · Zbl 1336.68264
[178] Lê, N.-M., On general properties of strictly convex smooth distance functions in ℝ^d, (), 375-380
[179] Lê, N.-M., Randomized incremental construction of simple abstract Voronoi diagrams in 3-space, (), Comput. geom., 8, 297-298, (1997) · Zbl 0887.68112
[180] Lee, D.T., Two-dimensional Voronoi diagrams in the L_p-metric, J. assoc. comput. Mach., 27, 604-618, (1980), MR 83c:68077. · Zbl 0445.68053
[181] Lee, D.T.; Wong, C.K., Voronoi diagrams in L_1 (L∞) metrics with 2-dimensional storage applications, SIAM J. comput., 9, 200-211, (1980), MR 81d:68053. · Zbl 0447.68111
[182] Lelek, A.; Nitka, W., On convex metric spaces, I, Fund. math., 49, 183-204, (1960/1961), MR 23 #A2192 · Zbl 0171.21601
[183] Lenz, H., Die eilinien mit einer schar konjugierter durchmesserpaare, Arch. math., 9, 134-139, (1958), MR 21 #2204. · Zbl 0083.17203
[184] Leven, D.; Sharir, M., Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams, Discrete comput. geom., 2, 9-31, (1987), MR 88i:68092. · Zbl 0606.52002
[185] Lewis, J.E., A Banach space whose elements are classes of sets of constant width, Canad. math. bull., 18, 679-689, (1975), MR 58 #12289. · Zbl 0344.46044
[186] Loomis, P., Covering among constant relative width bodies in the plane, ()
[187] Ma, L., Bisectors and Voronoi diagrams for convex distances functions, () · Zbl 0954.65015
[188] Maehara, H., Convex bodies forming pairs of constant width, J. geom., 22, 101-107, (1984), MR 86a:52007. · Zbl 0546.52002
[189] Makai, E.; Martini, H., A new characterization of convex plates of constant width, Geom. dedicata, 34, 199-209, (1990), MR 91g:52001. · Zbl 0688.52002
[190] Makai, E.; Martini, H., On the number of antipodal and strictly antipodal pairs of points in finite subsets of ℝ^d, (), 457-470, MR 92f:52020. · Zbl 0738.52005
[191] Makeev, A.M., The degree of a mapping in some problems of combinatorial geometry (in Russian), Ukrain. geom. sb., J. soviet math., 51, 2544-2546, (1990), MR 88m:55001. · Zbl 0705.52010
[192] Makeev, A.M., Inscribed simplices of a convex body (in Russian), Ukrain. geom. sb., J. math. sci., 72, 3189-3190, (1994), MR 95d:52006.
[193] Mani-Levitska, P., Characterizations of convex sets, (), 19-41, MR 94k:52001. · Zbl 0847.52001
[194] Mann, H., Untersuchungen über wabenzellen bei allgemeiner minkowskischer metrik, Monatsh. math. phys., 42, 417-424, (1935) · JFM 61.1427.01
[195] Martini, H.; Soltan, P., On convex partitions of polygonal regions, Discrete math., 195, 167-180, (1999), MR 99j:52016. · Zbl 0954.52023
[196] Martini, H.; Swanepoel, K.J.; Weiss, G., The geometry of Minkowski spaces — a survey, Part I. expo. math., 19, 97-142, (2001), MR 2002h:46015a. (Errata: Expo. Math. 19 (2001), p. 364. MR 2002h:46015b) · Zbl 0984.52004
[197] Martini, H.; Swanepoel, K.J.; Weiss, G., The Fermat-Torricelli problem in normed planes and spaces, J. optim. theory appl., 115, 283-314, (2002) · Zbl 1047.90032
[198] Mayer, A.E., Eine überkonvexität, Math. Z., 39, 512-531, (1934), Zbl. 10,270. · JFM 61.1427.02
[199] Mazón, M.L., Diagramas de Voronoi en caleidoscopios, ()
[200] Mazón, M.L.; Recio, T., Voronoi diagrams based on strictly convex distances in the plane, (1991), Manuscript, Departamento de Matemáticas, Universidad de Cantabria Santander
[201] Mazur, S., Über schwache konvergenz in den Räumen (L^p), Studia math., 4, 128-133, (1993) · JFM 59.1076.01
[202] Mazur, S., Quelques propertiés caractéristiques des espaces euclideans, C. R. acad. sci. Paris, 207, 761-764, (1938) · JFM 64.0376.03
[203] McAllister, M.; Kirkpatrick, D.; Snoeyink, J., A compact piecewise-linear Voronoi diagram for convex sites in the plane, Discrete comput. geom., 15, 73-105, (1996), MR 97c:68159. · Zbl 0840.68119
[204] Meissner, E., Über punktmengen konstanter breite, Vierteljahresschr. naturforsch. ges. Zürich, 56, 42-50, (1911), Jbuch. 42,91. · JFM 42.0091.01
[205] Melanchrinoudis, E.; Xanthopulos, Z., A maximum L_p distance problem, J. math. anal. appl., 217, 650-671, (1998), MR 99d:90042. · Zbl 0894.90098
[206] Menger, K., Untersuchungen über allgemeine metrik, I, II, III, Math. ann., 100, 75-163, (1928) · JFM 54.0622.02
[207] Menger, K., Metrische untersuchungen, Ergebnisse eines mathematischen kolloquiums (wien), 1, 20-27, (1931)
[208] Montejano, L., Cuerpos de ancho constante, (1998), Universidad Nacional Autónoma de Mexico, Fondo de Cultura Económica Santander
[209] Nitka, W., Remarks on sets convex in the sense of J. de groot, Indag. math., 21, 36-38, (1959), MR 21 #3829. · Zbl 0113.16502
[210] Nitka, W.; Wiatrowska, L., Linearity in the Minkowski space with non-strictly convex spheres, (), 113-115, MR 39 #2070. · Zbl 0191.52701
[211] Ohmann, D., Extremalprobleme für konvexe bereiche der euklidischen ebene, Math. Z., 55, 346-352, (1952), MR 14,76a. · Zbl 0046.15904
[212] Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S.N., Spatial tesselations: concepts and applications of Voronoi diagrams, (2000), John Wiley & Sons Mexico
[213] Pál, J., Über ein elementares variationsproblem, Math.-fys. medd., danske vid. selsk., 3, no. 2, (1920), 35 pp · JFM 47.0684.01
[214] Panda, B.B.; Kapoor, O.P., On equidistant sets in normed linear spaces, Bull. austral. math. soc., 11, 443-454, (1974), MR 50 #10763 · Zbl 0301.46019
[215] Payá, R.; Yost, D., The two-ball property: transitivity and examples, Mathematika, 35, 190-197, (1988), MR 90a:46036. · Zbl 0651.46024
[216] Petty, C.M., On the geometry of the Minkowski plane, Riv. math. univ. parma, 6, 269-292, (1955), MR 18,760e. · Zbl 0067.40102
[217] Petty, C.M., Isoperimetric problems, (), 26-41, MR 50 #14499. · Zbl 0245.52007
[218] Petty, C.M., Geominimal surface area, Geom. dedicata, 3, 77-97, (1974), MR 48 #12313. · Zbl 0285.52006
[219] Petty, C.M., Ellipsoids, (), 264-276, MR 86a:52019. · Zbl 0518.52003
[220] Petty, C.M.; Crotty, J.M., Characterizations of spherical neighbourhoods, Canad. J. math., 22, 431-435, (1970), MR 41 #2538. · Zbl 0195.12603
[221] Phadke, B.B., Equidistant loci and the Minkowskian geometries, Canad. J. math., 24, 312-327, (1972), MR 45 #5881. · Zbl 0235.53048
[222] Phadke, B.B., Conditions for a plane projective metric to be a norm, Bull. austral. math. soc., 9, 49-54, (1973), MR 48 #1053. · Zbl 0255.50007
[223] Phadke, B.B., Flatness of bisectors and the symmetry of distance, J. geom., 4, 35-51, (1974), MR 51 #11390. · Zbl 0268.53031
[224] Phadke, B.B., A triangular world with hexagonal circles, Geom. dedicata, 3, 511-520, (1974/1975), MR 51 #4061. · Zbl 0294.53040
[225] Phadke, B.B., The theorem of desargues in planes with analogues to Euclidean angular bisectors, Math. scand., 39, 191-194, (1976), MR 56 #3752. · Zbl 0345.53045
[226] Phelps, R.R., A representation theorem for bounded convex sets, (), 976-983, MR 23 #A501. · Zbl 0098.07904
[227] Prisakaru, K.F.; Soltan, P.S., Partition of a planar domain into d-convex parts and its application (in Russian), Dokl. akad. nauk SSSR, Transl. soviet math. dokl., 25, 53-55, (1982) · Zbl 0558.52001
[228] Rademacher, H.; Toeplitz, O., The enjoyment of mathematics, (1957), Princeton Univ. Press Basel, (Tansl. of “Von Zahlen und Figuren”, Springer, Berlin 1933). MR 18,454b. · Zbl 0078.00114
[229] Raigorodskii, A.M., Borsuk’s problem and the chromatic numbers of some metric spaces (in Russian), Uspekhi mat. nauk, Transl. Russian math. surveys, 56, no. 1, 103-139, (2001), (337) · Zbl 1008.54018
[230] Reda, C., Straight lines in metric spaces, Demonstratio math., 6, 809-819, (1973), MR 52 #4244. · Zbl 0301.54035
[231] Reimann, H., Eine abschätzung für den flächeninhalt von eichbereichen Banach-minkowskischer ebenen, Wiss. Z. Pädagog. hochsch. Erfurt/Mühlhausen math.-natur. reihe, 23, 124-132, (1987), MR 89d:52027. · Zbl 0627.52006
[232] Reuleaux, F., Lehrbuch der kinematik, (1875), Teil I. Vieweg Princeton, N.J., (translated: 1876; reprinted: Dover, New York, 1963). · JFM 07.0540.03
[233] Rhodes, F., A triangular duality for two metrics for the co-ordinate plane, Math. gaz., 54, 19-23, (1970) · Zbl 0187.19601
[234] Rinow, W., Die innere geometrie der metrischen Räume, (), MR 23 #A1290 · Zbl 0096.16302
[235] Rodriguez Palacios, A., Infinite-dimensional sets of constant width and their applications, Extracta math., 5, 41-52, (1990) · Zbl 1147.46304
[236] Rogers, C.A.; Shephard, G.C., The difference body of a convex body, Arch. math., 8, 220-233, (1957), MR 19,1073f. · Zbl 0082.15703
[237] Sallee, G.T., The maximal set of constant width in a lattice, Pacific J. math., 28, 669-674, (1969), MR 39 #2069. · Zbl 0174.25401
[238] Sallee, G.T., Maximal areas of reuleaux polygons, Canad. math. bull., 13, 175-179, (1970), MR 42 #2368. · Zbl 0199.57101
[239] Sallee, G.T., Reuleaux polytopes, Mathematika, 17, 315-323, (1970), MR 45 #5872. · Zbl 0218.52001
[240] Sallee, G.T., Sets of constant width, the spherical intersection property and circumscribed balls, Bull. austral. math. soc., 33, 369-371, (1986), MR 87g:52010. · Zbl 0578.52003
[241] Sallee, G.T., Pairs of sets of constant relative width, J. geom., 29, 1-11, (1987), MR 88e:52005. · Zbl 0615.52004
[242] Sallee, G.T., Preassigning the boundary of diametrically complete sets, Monatsh. math., 105, 217-227, (1988), MR 89d:52010. · Zbl 0637.52004
[243] Santos, F., On Delaunay oriented matroids for convex distance functions, Discrete comput. geom., 16, 197-210, (1996), MR 97e:52019. · Zbl 0879.52008
[244] Schneider, R., Convex bodies: the brunn-Minkowski theory, (), MR 94d:52007. · Zbl 1143.52002
[245] Schwarz, J.T.; Sharir, M., Algorithmic motion planning in robotics, (), 391-430, MR 92d:68001 · Zbl 0900.68248
[246] Scott, P.R., Sets of constant width and inequalities, Quart. J. math. Oxford, 32, 2, 345-348, (1981), MR 82k:52013 · Zbl 0468.52009
[247] Shaidenko, A.V.; Shaidenko, A.V., Some characteristic properties of the ellipsoid, Sibirsk mat. zh., Sibirsk mat. zh., 21, 240-234, (1980), MR 81h:53006
[248] Sharir, M., Almost tight upper bounds for lower envelopes in higher dimensions, Discrete comput. geom., 12, 327-345, (1994), MR 95k:52024 · Zbl 0819.68068
[249] Shephard, G.C., Reducible convex sets, Mathematika, 13, 49-50, (1966), MR 33 #6504 · Zbl 0146.44301
[250] Singer, I., Abstract convex analysis, (1997), John Wiley & Sons, Inc. Amsterdam, MR 98k:49002 · Zbl 0898.49001
[251] Skyum, S., A sweepline algorithm for generalized Delaunay triangulations, ()
[252] Smiley, M.F., A comparison of algebraic, metric, and lattice betweenness, Bull. amer. math. soc., 49, 246-252, (1943), MR 4,248b · Zbl 0060.06406
[253] Soetens, E., Convexity in Busemann spaces, Bull. soc. math. belg., 19, 194-213, (1967), MR 37 #3493 · Zbl 0162.25902
[254] Soltan, P.S., Helly’s theorem for d-convex sets, Dokl. akad. nauk SSSR, Transl. soviet math. dokl., 13, 975-978, (1972), (in Russian) · Zbl 0262.52006
[255] Soltan, P.S., Extremal problems on convex sets, (), MR 58 #18164 · Zbl 0422.52001
[256] Soltan, P.S.; Prisakaru, K.F., The Steiner problem on graphs. I., Dokl. akad. nauk SSSR, Soviet math. dokl., 12, 734-738, (1971), (in Russian) · Zbl 0231.05114
[257] Soltan, P.S.; Soltan, V.P., A criterion for the normability in a class of linear metric spaces, Mat. issled., 10, 275-279, (1975), MR 53 #1428 · Zbl 0347.46014
[258] Soltan, V.P., The diameter of d-convex hulls, Mat. issled., 9, 96-109, (1974), MR 52 #9082 · Zbl 0306.52003
[259] Soltan, V.P., A certain property of a d-convex ball, Mat. issled., 10, 149-156, (1975), MR 53 #1409 · Zbl 0346.52006
[260] Soltan, V.P., A class of finite-dimensional normed spaces, Mat. issled., 42, 204-215, (1976), MR 58 #30075
[261] Soltan, V.P., A theorem on full sets, Dokl. akad. nauk SSSR, Transl. soviet math. dokl., 18, 680-682, (1977), (in Russian) · Zbl 0373.52003
[262] Soltan, V.P., The unit ball of the β*-space ℝ^n, Mat. issled., 45, 169-178, (1977), MR 58 #24021 · Zbl 0422.52002
[263] Soltan, V.P., Bodies of constant width in finite-dimensional normed spaces, Mat. zametki, Transl. math. notes, 25, 147-150, (1979), (in Russian) · Zbl 0422.52003
[264] Soltan, V.P., Star-shaped sets in the axiomatic theory of convexity, Soobšč. akad. nauk gruzin. SSR, 96, 45-48, (1979), MR 81k:52017 · Zbl 0418.52003
[265] Soltan, V.P., A theorem on d-starlike sets, Mat. issled., 53, 122-125, (1979), MR 81k:52018 · Zbl 0444.52006
[266] Soltan, V.P., Some properties of d-convex functions, I, Izv. akad. nauk moldav. SSR, ser. fiz.-tekhn. mat. nauk, 27-31, (1980), MR 83a:52004a
[267] Soltan, V.P., Metrically extremal and boundary points, (), 64-73, MR 82i:52003
[268] Soltan, V.P., Metrically extremal and boundary points of convex sets in a normed space, Mat. issled., 54, 155-163, (1980), MR 81k:46016 · Zbl 0439.52002
[269] Soltan, V.P., Some properties of d-convex functions, II, Ivz. akad. nauk moldav. SSR, ser. fiz.-tekhn. mat. nauk, 21-26, (1981), MR 83a:52004b · Zbl 0484.52001
[270] Soltan, V.P., Introduction to the axiomatic theory of convexity, (1984), Shtiinca, MR 87h:52004 · Zbl 0559.52001
[271] Soltan, V.P., Partition of a plane set into a finite number of d-convex parts, Kibernetika (kiev), 6, 70-74, (1984), MR 87e:52008 · Zbl 0576.52008
[272] Soltan, V.P., Metric convexity in graphs, Studia univ. babeş-bolyai math., 36, 3-43, (1991), MR 95k:52002 · Zbl 0882.52001
[273] Soltan, V.P.; Soltan, P.S., D-convex functions, Dokl. akad. nauk SSSR, Transl. soviet math. dokl., 20, 1323-1326, (1979), (in Russian) · Zbl 0504.52008
[274] Soltan, V.P.; Topală, O.I., Star sets in the Cartesian product of metric spaces, (), 128-135, MR 81k:52016
[275] Sorokin, V.A., Classes of convex sets as generalized metric spaces, Mat. zametki, 4, 45-52, (1968), MR 38 #2670
[276] Sowell, K.O., Taxicab geometry — a new slant, Math. mag., 62, 238-248, (1989), MR 91a:51003 · Zbl 0685.51011
[277] Stifter, S., Characterization of contour elements that generate abstract Voronoi diagrams, Comput. geom., 7, 245-262, (1997), MR 98a:52024 · Zbl 0870.68150
[278] Stiles, W.J., On inversions in normed linear spaces, (), 505-508, MR 38 #3718 · Zbl 0175.41903
[279] Stoyan, D.; Kendall, W.S.; Mecke, J., Stochastic geometry and its applications, (1987), Wiley Kishinev, MR 88j:60034a
[280] Süss, W., Über affine geometrie: eiflächen konstanter affinbreite, Math. ann., 96, 251-260, (1927) · JFM 52.0773.01
[281] Szökefalvi-Nagy, Gy., Zentralsymmetrisierung konvexer Körper, Publ. math. debrecen, 1, 29-32, (1949), MR 11,386h · Zbl 0034.10504
[282] Tagansky, B., The complexity of substructures in arrangements of surfaces, () · Zbl 0856.68142
[283] Thompson, A.C., Minkowski geometry, (1996), Cambridge University Press Tel Aviv, MR 97f:52001 · Zbl 0868.52001
[284] Topală, O.I., Local d-convexity and d-starlike sets, Mat. issled., 53, 126-135, (1979), MR 81d:52004
[285] Topală, O.I., Extremal points and d-star-shaped sets, (), 108-110, MR 83i:52007
[286] Topală, O.I., The intersection and union of star-shaped sets in a metric space, (), 111-117, MR 83i:52008
[287] Topală, O.I., Finite unions of d-convex, d-starshaped and L_n-starshaped sets, (), 103-110, MR 87g:52017
[288] Topală, O.I., Krasnosel’Skii’s theorem for points of local d-nonconvexity, (), 183-195, MR 96e:52012 · Zbl 0848.52001
[289] Toranzos, F.A., Immersion of convex metric spaces in E^n, Math. notae, 21, 29-53, (1966-1967), MR 39 #870
[290] Toranzos, F.A., Metric betweenness in normed linear spaces, (), 99-102, MR 46 #4171 · Zbl 0223.46021
[291] Valentine, J.E., Some implications of Euclid’s proposition 7, Math. japonica, 28, 421-425, (1983), MR 84m:46023 · Zbl 0535.52003
[292] Valette, G., On metric segments in finite-dimensional normed spaces, Bull. soc. math. belg. Sér. A, 42, 761-766, (1990), MR 96a:52004 · Zbl 0736.52001
[293] van de Vel, M.L.J., Theory of convex structures, (), MR 95a:52002
[294] Verheul, E.R., Multimedians in metric and normed spaces, (), 136 pp. MR 94i:54062 · Zbl 0790.46008
[295] Vincensini, P., Corps convexes, series linéaires. domaines vectoriels, Mem. des sciences math., (1938), Zbl. 21,356. · JFM 64.0730.01
[296] Voronoi, G., Nouvelles applications des paramètres continus à la théorie des formes quadratiques, (), 97-178 · JFM 38.0261.01
[297] Voronoi, G., Nouvelles applications des paramètres continus á la théorie des formes quadratiques, (), 198-287 · JFM 39.0274.01
[298] Vrećica, S., A note on sets of constant width, Publ. inst. math. (beograd) (N.S.), 29, 289-291, (1981), MR 83g:52006 · Zbl 0498.52001
[299] Weißler, A., General bisectors and their applications to planar location theory, ()
[300] Wernicke, B., Triangles and reuleaux triangles in Banach-Minkowski planes, (), 505-511, MR 96m:51006 · Zbl 0824.51016
[301] Widmayer, P.; Wu, Y.F; Wong, C.K., On some distance problems in fixed orientations, SIAM J. comput., 16, 728-746, (1987), MR 88g:68105 · Zbl 0625.68049
[302] Woods, A.C., A characterization of ellipsoids, Duke math. J., 36, 1-6, (1969), MR 38 #6460 · Zbl 0195.51602
[303] Woz̀niak, K., Properties of generalized segments and lines in normed spaces, Zeszyty nauk. wyż. szkoły ped. w opolu mat., 24, 81-91, (1986), MR 88k:51036 · Zbl 0649.46008
[304] Yost, D., Irreducible convex sets, Mathematika, 38, 134-155, (1991), MR 92h:52006 · Zbl 0761.52011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.