×

zbMATH — the first resource for mathematics

Extended supersymmetry in Dirac action with extra dimensions. (English) Zbl 1407.81104
MSC:
81Q60 Supersymmetry and quantum mechanics
83E15 Kaluza-Klein and other higher-dimensional theories
81R25 Spinor and twistor methods applied to problems in quantum theory
81R40 Symmetry breaking in quantum theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] Cooper, F.; Khare, A.; Sukhatme, U., Supersymmetry and quantum mechanics, Phys. Rep., 251, 267-385, (1995)
[2] Quesne, C.; Tkachuk, V. M., Dirac oscillator with nonzero minimal uncertainty in position, J. Phys. A: Math. Gen., 38, 1747-1766, (2005) · Zbl 1061.81023
[3] Bagchi, B.; Quesne, C.; Roychoudhury, R., Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry, Pramana, 73, 337-347, (2009)
[4] Odake, S.; Sasaki, R., Infinitely many shape invariant potentials and new orthogonal polynomials, Phys. Lett. B, 679, 414-417, (2009)
[5] David, J.; Fernandez, C., Supersymmetric quantum mechanics, AIP Conf. Proc., 1287, 3-36, (2010)
[6] Claus, P.; Derix, M.; Kallosh, R.; Kumar, J.; Townsend, P. K.; Van Proeyen, A., Black holes and superconformal mechanics, Phys. Rev. Lett., 81, 4553-4556, (1998) · Zbl 0949.83038
[7] Gibbons, G. W.; Townsend, P. K., Black holes and Calogero models, Phys. Lett. B, 454, 187-192, (1999) · Zbl 1009.83512
[8] Britto-Pacumio, R.; Michelson, J.; Strominger, A.; Volovich, A., Lectures on superconformal quantum mechanics and multi-black hole moduli spaces, NATO Sci. Ser. C, 556, 255-284, (2000) · Zbl 0986.81092
[9] Bellucci, S.; Galajinsky, A.; Ivanov, E.; Krivonos, S., AdS(2)/CFT(1), canonical transformations and superconformal mechanics, Phys. Lett. B, 555, 99-106, (2003) · Zbl 1008.81085
[10] Bakas, I., Energy-momentum/Cotton tensor duality for AdS(4) black holes, J. High Energy Phys., JHEP01(2009), 003, (2009) · Zbl 1243.83032
[11] Fu, W.; Gaiotto, D.; Maldacena, J.; Sachdev, S., Supersymmetric Sachdev–Ye–Kitaev models, Phys. Rev. D, 95, (2017)
[12] Li, T.; Liu, J.; Xin, Y.; Zhou, Y., Supersymmetric SYK model and random matrix theory, J. High Energy Phys., JHEP06(2017), 111, (2017) · Zbl 1380.81406
[13] Yoon, J., Supersymmetric SYK model: bi-local collective superfield/supermatrix formulation, J. High Energy Phys., JHEP10(2017), 172, (2017) · Zbl 1383.81263
[14] Murugan, J.; Stanford, D.; Witten, E., More on supersymmetric and 2d analogs of the SYK model, J. High Energy Phys., JHEP08(2017), 146, (2017) · Zbl 1381.81121
[15] Hunter-Jones, N.; Liu, J., Chaos and random matrices in supersymmetric SYK, J. High Energy Phys., JHEP05(2018), 202, (2018) · Zbl 1391.83078
[16] Lim, C. S.; Nagasawa, T.; Sakamoto, M.; Sonoda, H., Supersymmetry in gauge theories with extra dimensions, Phys. Rev. D, 72, (2005)
[17] Lim, C. S.; Nagasawa, T.; Ohya, S.; Sakamoto, K.; Sakamoto, M., Supersymmetry in 5D gravity, Phys. Rev. D, 77, (2008)
[18] Lim, C. S.; Nagasawa, T.; Ohya, S.; Sakamoto, K.; Sakamoto, M., Gauge fixing and residual symmetries in gauge/gravity theories with extra dimensions, Phys. Rev. D, 77, (2008)
[19] Nagasawa, T.; Ohya, S.; Sakamoto, K.; Sakamoto, M., Emergent supersymmetry in Warped backgrounds, SIGMA, 7, 065, (2011) · Zbl 1250.81043
[20] Pashnev, A.; Toppan, F., On the classification of N-extended supersymmetric quantum mechanical systems, J. Math. Phys., 42, 5257, (2001) · Zbl 1018.81018
[21] Kuznetsova, Z.; Rojas, M.; Toppan, F., Classification of irreps and invariants of the N-extended supersymmetric quantum mechanics, J. High Energy Phys., JHEP2006(2006), 098, (2006) · Zbl 1226.81076
[22] Faux, M.; Gates, S. J Jr, Adinkras: a graphical technology for supersymmetric representation theory, Phys. Rev. D, 71, (2005)
[23] de Crombrugghe, M.; Rittenberg, V., Supersymmetric quantum mechanics, Ann. Phys., NY, 151, 99-126, (1983)
[24] Howe, P.; Penati, S.; Pernici, M.; Townsend, P., Wave equations for arbitrary spin from quantization of the extended supersymmetric spinning particle, Phys. Lett. B, 215, 555-558, (1988)
[25] Akulov, V.; Kudinov, M., Extended supersymmetric quantum mechanics, Phys. Lett. B, 460, 365-370, (1999) · Zbl 0987.81029
[26] Nagasawa, T.; Sakamoto, M.; Takenaga, K., Supersymmetry and discrete transformations on S1with point singularities, Phys. Lett. B, 583, 357-363, (2004) · Zbl 1246.81063
[27] Nagasawa, T.; Sakamoto, M.; Takenaga, K., Extended supersymmetry and its reduction on a circle with point singularities, J. Phys. A: Math. Gen., 38, 8053-8082, (2005) · Zbl 1081.81050
[28] Brauer, R.; Weyl, H., Spinors in n dimensions, Am. J. Math., 57, 425-449, (1935) · Zbl 0011.24401
[29] Wetterich, C., Massless spinors in more than four-dimensions, Nucl. Phys. B, 211, 177-188, (1983)
[30] Kugo, T.; Townsend, P. K., Supersymmetry and the division algebras, Nucl. Phys. B, 221, 357-380, (1983)
[31] Wess, J.; Bagger, J., Supersymmetry and Supergravity, (1992), Princeton, NJ: Princeton University Press, Princeton, NJ
[32] Witten, E., Dynamical breaking of supersymmetry, Nucl. Phys. B, 188, 513-554, (1981) · Zbl 1258.81046
[33] Fujimoto, Y.; Hasegawa, K.; Nishiwaki, K.; Sakamoto, M.; Tatsumi, K., Supersymmetry in the 6D Dirac action, Prog. Theor. Exp. Phys., 2017, (2017)
[34] Fujimoto, Y.; Hasegawa, K.; Nishiwaki, K.; Sakamoto, M.; Tatsumi, K., 6d Dirac fermion on a rectangle; scrutinizing boundary conditions, mode functions and spectrum, Nucl. Phys. B, 922, 186-225, (2017) · Zbl 1373.81199
[35] Polchinski, J., String Theory: Volume 1, an Introduction to the Bosonic String, (1998), Cambridge: Cambridge University Press, Cambridge · Zbl 1006.81521
[36] Polchinski, J., String Theory: Volume 2, Superstring Theory and Beyond, (1998), Cambridge: Cambridge University Press, Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.