zbMATH — the first resource for mathematics

Running of radiative neutrino masses: the scotogenic model – revisited. (English) Zbl 1390.81708
Summary: A few years ago, it had been shown that effects stemming from renormalisation group running can be quite large in the scotogenic model, where neutrinos obtain their mass only via a 1-loop diagram (or, more generally, in many models in which the light neutrino mass is generated via quantum corrections at loop-level). We present a new computation of the renormalisation group equations (RGEs) for the scotogenic model, thereby updating previous results. We discuss the matching in detail, in particular in what regards the different mass spectra possible for the new particles involved. We furthermore develop approximate analytical solutions to the RGEs for an extensive list of illustrative cases, covering all general tendencies that can appear in the model. Comparing them with fully numerical solutions, we give a comprehensive discussion of the running in the scotogenic model. Our approach is mainly top-down, but we also discuss an attempt to get information on the values of the fundamental parameters when inputting the low-energy measured quantities in a bottom-up manner. This work serves the basis for a full parameter scan of the model, thereby relating its low- and high-energy phenomenology, to fully exploit the available information.

81V35 Nuclear physics
PDF BibTeX Cite
Full Text: DOI
[1] Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett.81 (1998) 1562 [hep-ex/9807003] [INSPIRE].
[2] KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett.90 (2003) 021802 [hep-ex/0212021] [INSPIRE].
[3] K2K collaboration, M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev.D 74 (2006) 072003 [hep-ex/0606032] [INSPIRE].
[4] T2K collaboration, K. Abe et al., First muon-neutrino disappearance study with an off-axis beam, Phys. Rev.D 85 (2012) 031103 [arXiv:1201.1386] [INSPIRE].
[5] Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett.108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].
[6] RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett.108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].
[7] Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev.D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].
[8] V.M. Lobashev, Direct search for the neutrino mass in the beta decay of tritium: status of theTroitsk ν-massexperiment, Phys. Atom. Nucl.63 (2000) 962 [Yad. Fiz.63 (2000) 1037] [INSPIRE].
[9] Kraus, C.; etal., Final results from phase II of the mainz neutrino mass search in tritium β decay, Eur. Phys. J., C 40, 447, (2005)
[10] Minkowski, P., Μ → eγ at a rate of one out of 10\^{}{9} muon decays?, Phys. Lett., B 67, 421, (1977)
[11] T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc.C 7902131 (1979) 95 [INSPIRE].
[12] M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North Holland Publ. Co. (1979) [Conf. Proc.C 790927 (1979) 315] [arXiv:1306.4669] [INSPIRE].
[13] S.L. Glashow, The future of elementary particle physics, preliminary version given at Colloquium in Honor of A. Visconti, Marseille-Luminy Univ. (1979) [NATO Adv. Study Inst.B 61 (1980) 687] [INSPIRE].
[14] Mohapatra, RN; Senjanović, G., Neutrino mass and spontaneous parity violation, Phys. Rev. Lett., 44, 912, (1980)
[15] Schechter, J.; Valle, JWF, Neutrino masses in SU(2) × U(1) theories, Phys. Rev., D 22, 2227, (1980)
[16] Farzan, Y.; Pascoli, S.; Schmidt, MA, Recipes and ingredients for neutrino mass at loop level, JHEP, 03, 107, (2013)
[17] A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett.B 93 (1980) 389 [Erratum ibid.B 95 (1980) 461] [INSPIRE].
[18] Ma, E., Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev., D 73, 077301, (2006)
[19] Bonnet, F.; Hirsch, M.; Ota, T.; Winter, W., Systematic study of the d = 5 Weinberg operator at one-loop order, JHEP, 07, 153, (2012)
[20] Zee, A., Quantum numbers of Majorana neutrino masses, Nucl. Phys., B 264, 99, (1986)
[21] Babu, KS, Model of ‘calculable’ Majorana neutrino masses, Phys. Lett., B 203, 132, (1988)
[22] Kajiyama, Y.; Okada, H.; Yagyu, K., Two loop radiative seesaw model with inert triplet scalar field, Nucl. Phys., B 874, 198, (2013) · Zbl 1282.83070
[23] Aoki, M.; Kubo, J.; Takano, H., Two-loop radiative seesaw mechanism with multicomponent dark matter explaining the possible γ excess in the Higgs boson decay and at the Fermi LAT, Phys. Rev., D 87, 116001, (2013)
[24] Baek, S.; Okada, H.; Toma, T., Radiative lepton model and dark matter with global U(1)′ symmetry, Phys. Lett., B 732, 85, (2014)
[25] King, SF; Merle, A.; Panizzi, L., Effective theory of a doubly charged singlet scalar: complementarity of neutrino physics and the LHC, JHEP, 11, 124, (2014)
[26] Farzan, Y., Two-loop snail diagrams: relating neutrino masses to dark matter, JHEP, 05, 029, (2015)
[27] Aristizabal Sierra, D.; Degee, A.; Dorame, L.; Hirsch, M., Systematic classification of two-loop realizations of the Weinberg operator, JHEP, 03, 040, (2015)
[28] Gustafsson, M.; No, JM; Rivera, MA, Predictive model for radiatively induced neutrino masses and mixings with dark matter, Phys. Rev. Lett., 110, 211802, (2013)
[29] Gustafsson, M.; No, JM; Rivera, MA, Radiative neutrino mass generation linked to neutrino mixing and 0νββ-decay predictions, Phys. Rev., D 90, 013012, (2014)
[30] Ahriche, A.; Chen, C-S; McDonald, KL; Nasri, S., Three-loop model of neutrino mass with dark matter, Phys. Rev., D 90, 015024, (2014)
[31] Chen, C-S; McDonald, KL; Nasri, S., A class of three-loop models with neutrino mass and dark matter, Phys. Lett., B 734, 388, (2014)
[32] Hatanaka, H.; Nishiwaki, K.; Okada, H.; Orikasa, Y., A three-loop neutrino model with global U(1) symmetry, Nucl. Phys., B 894, 268, (2015) · Zbl 1328.81237
[33] Duerr, M.; Lindner, M.; Merle, A., On the quantitative impact of the schechter-valle theorem, JHEP, 06, 091, (2011) · Zbl 1298.81419
[34] Nebot, M.; Oliver, JF; Palao, D.; Santamaria, A., Prospects for the zee-babu model at the CERN LHC and low energy experiments, Phys. Rev., D 77, 093013, (2008)
[35] Herrero-Garcia, J.; Nebot, M.; Rius, N.; Santamaria, A., The zee-babu model revisited in the light of new data, Nucl. Phys., B 885, 542, (2014) · Zbl 1323.81118
[36] Kniehl, BA; Pilaftsis, A., Mixing renormalization in Majorana neutrino theories, Nucl. Phys., B 474, 286, (1996)
[37] Bouchand, R.; Merle, A., Running of radiative neutrino masses: the scotogenic model, JHEP, 07, 084, (2012)
[38] Babu, KS; Julio, J., Renormalization of a two-loop neutrino mass model, AIP Conf. Proc., 1604, 134, (2014)
[39] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Adv. Study Inst.B 59 (1980) 135 [INSPIRE].
[40] Weinberg, S., Baryon and lepton nonconserving processes, Phys. Rev. Lett., 43, 1566, (1979)
[41] Xing, Z-z, Massive and massless neutrinos on unbalanced seesaws, Chin. Phys., C 32, 96, (2008)
[42] Antusch, S.; Kersten, J.; Lindner, M.; Ratz, M.; Schmidt, MA, Running neutrino mass parameters in see-saw scenarios, JHEP, 03, 024, (2005)
[43] J.-w. Mei, Running neutrino masses, leptonic mixing angles and CP-violating phases: from M_{\(Z\)}to Λ_{GUT}, Phys. Rev.D 71 (2005) 073012 [hep-ph/0502015] [INSPIRE].
[44] Chao, W.; Zhang, H., One-loop renormalization group equations of the neutrino mass matrix in the triplet seesaw model, Phys. Rev., D 75, 033003, (2007)
[45] M.A. Schmidt, Renormalization group evolution in the type I and type II seesaw model, Phys. Rev.D 76 (2007) 073010 [Erratum ibid.D 85 (2012) 099903] [arXiv:0705.3841] [INSPIRE].
[46] Chakrabortty, J.; Dighe, A.; Goswami, S.; Ray, S., Renormalization group evolution of neutrino masses and mixing in the type-III seesaw mechanism, Nucl. Phys., B 820, 116, (2009) · Zbl 1194.81291
[47] Bergström, J.; Malinský, M.; Ohlsson, T.; Zhang, H., Renormalization group running of neutrino parameters in the inverse seesaw model, Phys. Rev., D 81, 116006, (2010)
[48] Casas, JA; Espinosa, JR; Ibarra, A.; Navarro, I., General RG equations for physical neutrino parameters and their phenomenological implications, Nucl. Phys., B 573, 652, (2000)
[49] Chankowski, PH; Krolikowski, W.; Pokorski, S., Fixed points in the evolution of neutrino mixings, Phys. Lett., B 473, 109, (2000)
[50] Antusch, S.; Kersten, J.; Lindner, M.; Ratz, M., Running neutrino masses, mixings and CP phases: analytical results and phenomenological consequences, Nucl. Phys., B 674, 401, (2003)
[51] G.G. Ross, Grand unified theories, Frontiers in Physics, vol. 60, Benjamin/Cummings, Reading U.S.A. (1984) [INSPIRE].
[52] Merle, A.; Niro, V., Deriving models for kev sterile neutrino dark matter with the Froggatt-Nielsen mechanism, JCAP, 07, 023, (2011)
[53] Kubo, J.; Ma, E.; Suematsu, D., Cold dark matter, radiative neutrino mass, μ → eγ and neutrinoless double beta decay, Phys. Lett., B 642, 18, (2006)
[54] Aristizabal Sierra, D.; Kubo, J.; Restrepo, D.; Suematsu, D.; Zapata, O., Radiative seesaw: warm dark matter, collider and lepton flavour violating signals, Phys. Rev., D 79, 013011, (2009)
[55] Suematsu, D.; Toma, T.; Yoshida, T., Reconciliation of CDM abundance and μ → eγ in a radiative seesaw model, Phys. Rev., D 79, 093004, (2009)
[56] Appelquist, T.; Carazzone, J., Infrared singularities and massive fields, Phys. Rev., D 11, 2856, (1975)
[57] J.C. Collins, Renormalization: an introduction to renormalization, the renormalization group, and the operator product expansion, Cambridge University Press, Cambridge U.K. (1984) [ISBN 9780521311779] [INSPIRE]. · Zbl 1094.53505
[58] Altarelli, G.; Feruglio, F., Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys., 82, 2701, (2010) · Zbl 1338.81382
[59] King, SF; Luhn, C., Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys., 76, 056201, (2013)
[60] King, SF; Merle, A.; Morisi, S.; Shimizu, Y.; Tanimoto, M., Neutrino mass and mixing: from theory to experiment, New J. Phys., 16, 045018, (2014)
[61] Wetterich, C., Neutrino masses and the scale of B − L violation, Nucl. Phys., B 187, 343, (1981)
[62] Lazarides, G.; Shafi, Q.; Wetterich, C., Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys., B 181, 287, (1981)
[63] Mohapatra, RN; Senjanović, G., Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev., D 23, 165, (1981)
[64] Cheng, TP; Li, L-F, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev., D 22, 2860, (1980)
[65] Foot, R.; Lew, H.; He, XG; Joshi, GC, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys., C 44, 441, (1989)
[66] Pilaftsis, A., Gauge and scheme dependence of mixing matrix renormalization, Phys. Rev., D 65, 115013, (2002)
[67] Antusch, S.; Kersten, J.; Lindner, M.; Ratz, M., Neutrino mass matrix running for nondegenerate seesaw scales, Phys. Lett., B 538, 87, (2002)
[68] Barger, VD; Pakvasa, S.; Weiler, TJ; Whisnant, K., Bimaximal mixing of three neutrinos, Phys. Lett., B 437, 107, (1998)
[69] Casas, JA; Ibarra, A., Oscillating neutrinos and μ → e, γ, Nucl. Phys., B 618, 171, (2001) · Zbl 0973.81542
[70] Das, D.; Saha, I., Search for a stable alignment limit in two-Higgs-doublet models, Phys. Rev., D 91, 095024, (2015)
[71] Merle, A.; Platscher, M., Parity problem of the scotogenic neutrino model, Phys. Rev., D 92, 095002, (2015) · Zbl 1390.81708
[72] Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys.C 38 (2014) 090001 [INSPIRE].
[73] Toma, T.; Vicente, A., Lepton flavor violation in the scotogenic model, JHEP, 01, 160, (2014)
[74] Gonzalez-Garcia, MC; Maltoni, M.; Schwetz, T., Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP, 11, 052, (2014)
[75] Grzadkowski, B.; Lindner, M.; Theisen, S., Nonlinear evolution of Yukawa couplings in the double Higgs and supersymmetric extensions of the standard model, Phys. Lett., B 198, 64, (1987)
[76] Hill, CT; Leung, CN; Rao, S., Renormalization group fixed points and the Higgs boson spectrum, Nucl. Phys., B 262, 517, (1985)
[77] T. Hahn, Routines for the diagonalization of complex matrices, physics/0607103 [INSPIRE].
[78] S. Antusch, J. Kersten, M. Lindner, M. Ratz and M. Schmidt, Mixing parameter tools 1.0. Documentation, https://www.hepforge.org/archive/reapmpt/MPT-Documentation-1.0.pdf (2014).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.