×

Homogeneous geodesics in 3-dimensional homogeneous affine manifolds. (English) Zbl 1244.53057

Summary: For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections on the examples of 3-dimensional Lie groups.

MSC:

53C30 Differential geometry of homogeneous manifolds
53B05 Linear and affine connections
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] Alexandroff, P. S., Hopf, H.: Topologie, Band I. Springer, 1935. · Zbl 0277.55001
[2] Alekseevsky, D., Arvanitoyeorgos, A.: Riemannian flag manifolds with homogeneous geodesics. Trans. Am. Math. Soc. 359, 8 (2007), 3769-3789 · Zbl 1148.53038 · doi:10.1090/S0002-9947-07-04277-8
[3] Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monaths. Math. 153 (2008), 1-18. · Zbl 1155.53009 · doi:10.1007/s00605-007-0494-0
[4] Calvaruso, G., Kowalski, O., Marinosci, R.A.: Homogeneous geodesics in solvable Lie groups. Acta Math. Hungarica 101, 4 (2003), 313-322. · Zbl 1057.53041 · doi:10.1023/B:AMHU.0000004942.87374.0e
[5] Calvaruso, G., Marinosci, R. A.: Homogeneous geodesics of three-dimensional unimodular Lorentzian Lie groups. Mediterr. J. Math. 3 (2006), 467-481. · Zbl 1150.53010 · doi:10.1007/s00009-006-0091-9
[6] Dušek, Z.: The existence of homogeneous geodesics in homogeneous affine manifolds. J. Geom. Phys. 60 (2010), 687-689. · Zbl 1190.53010 · doi:10.1016/j.geomphys.2009.12.015
[7] Dušek, Z., Kowalski, O.: Geodesic graphs on the 13-dimensional group of Heisenberg type. Math. Nachr. 254-255 (2003), 87-96. · Zbl 1019.22004 · doi:10.1002/mana.200310054
[8] Dušek, Z., Kowalski, O.: Light-like homogeneous geodesics and the Geodesic Lemma for any signature. Publ. Math. Debrecen 71, 1-2 (2007), 245-252. · Zbl 1135.53316
[9] Dušek, Z., Kowalski, O.: On six-dimensional pseudo-Riemannian almost g.o. spaces. Journal of Geometry and Physics 57 (2007), 2014-2023. · Zbl 1126.53026 · doi:10.1016/j.geomphys.2007.04.005
[10] Dušek, Z., Kowalski, O., Nikčević, S. Ž.: New examples of Riemannian g.o. manifolds in dimension 7. Differential Geom. Appl. 21 (2004), 65-78. · Zbl 1050.22011 · doi:10.1016/j.difgeo.2004.03.006
[11] Dušek, Z., Kowalski, O., Vlášek, Z.: Homogeneous geodesics in homogeneous affine manifolds. Result. Math. 54 (2009), 273-288. · Zbl 1184.53048 · doi:10.1007/s00025-009-0373-1
[12] Figueroa-O’Farrill, J., Meessen, P., Philip, S.: Homogeneity and plane-wave limits. J. High Energy Physics 05 (2005), 050-050. · doi:10.1088/1126-6708/2005/05/050
[13] Kobayashi, S., Nomizu, N.: Foundations of differential geometry I, II. Wiley Classics Library, 1996. · Zbl 0119.37502
[14] Kowalski, O., Nikčević, S.Ž.: On geodesic graphs of Riemannian g.o. spaces. Archiv der Math. 73 (1999), 223-234; Appendix: Archiv der Math. 79 (2002), 158-160. · Zbl 0940.53027 · doi:10.1007/s000130050032
[15] Kowalski, O., Nikčević, S.Ž., Vlášek, Z.: Homogeneous geodesics in homogeneous Riemannian manifolds - Examples. Geometry and Topology of Submanifolds, World Sci. Publishing co., River Edge, NJ (2000), 104-112. · Zbl 0989.53025
[16] Kowalski, O., Opozda, B., Vlášek, Z.: On locally nonhomogeneous pseudo-Riemannian manifolds with locally homogeneous Levi-Civita connections. International J.Math. 14, 6 (2003), 1-14. · Zbl 1061.53049 · doi:10.1142/S0129167X03001971
[17] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogenous connections on 2-dimensional manifolds via group-theoretical approach. Central European J. Math. 2, 1 (2004), 87-102. · Zbl 1060.53013 · doi:10.2478/BF02475953
[18] Kowalski, O., Szenthe, J.: On the existence of homogeneous geodesics in homogeneous Riemannian manifolds. Geom. Dedicata 81 (2000), 209-214; Erratum: Geom. Dedicata 84 (2001), 331-332. · Zbl 0980.53061 · doi:10.1023/A:1005287907806
[19] Kowalski, O., Vanhecke, L.: Riemannian manifolds with homogeneous geodesics. Boll. Un. Math. Ital. 5, B(7) (1991), 189-246. · Zbl 0731.53046
[20] Kowalski, O., Vlášek, Z.: Homogeneous Riemannian manifolds with only one homogeneous geodesic. Publ. Math. Debrecen 62, 3-4 (2003), 437-446. · Zbl 1060.53043
[21] Kowalski, O., Vlášek, Z.: On the moduli space of locally homogeneous affine connections in plane domains. Comment. Math. Univ. Carolinae 44, 2 (2003), 229-234. · Zbl 1097.53009
[22] Marinosci, R.A.: Homogeneous geodesics in a three-dimensional Lie group. Comm. Math. Univ. Carolinae 43, 2 (2002), 261-270. · Zbl 1090.53038
[23] Opozda, B.: A classification of locally homogeneous connections on 2-dimensional manifolds. Differential Geometry and its Applications 21, 2 (2004), 173-198. · Zbl 1063.53024 · doi:10.1016/j.difgeo.2004.03.005
[24] Philip, S.: Penrose limits of homogeneous spaces. J. Geom. Phys. 56 (2006), 1516-1533. · Zbl 1104.83020 · doi:10.1016/j.geomphys.2005.08.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.