×

Queens, attack! (English) Zbl 1461.00002

MSC:

00A08 Recreational mathematics
05-03 History of combinatorics
01A60 History of mathematics in the 20th century

Software:

OEIS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Ai, K. Li, S. Liu, and D. K. J. Lin. Balanced incomplete Latin square designs. J. Statist. Plann. Inference 143 (2013), 1575-1582. · Zbl 1279.62155
[2] J. Bell and B. Stevens. A survey of known results and research areas for \(n\)-queens. Discrete Math. 309 (2009), 1-31. · Zbl 1228.05002
[3] M. Bezzel (“Schachfreund”). Proposal of 8-queens problem. Berliner Schachzeitung 3 (1848), 363.
[4] T. M. Brown. Nonattacking arrangements of \(n\) queens with initial placements. J. Recreat. Math. 38 (2014), 23-37.
[5] T. M. Brown. The problem of pawns. Elec. J. Comb. 22:3 (2019), article P3.21. · Zbl 1417.05019
[6] A. C. F. Bueno. Right circulant matrices with ratio of the elements of Fibonacci and geometric sequence. Notes on Number Theory and Discrete Mathematics 22 (2016), 79-83. · Zbl 1373.15044
[7] D. Clark. A combinatorial theorem on circulant matrices. Amer. Math. Monthly 92 (1985), 725-729. · Zbl 0604.05009
[8] O. Demirörs, N. Rafraf, and M. Tanik. Obtaining \(N\)-queens solutions from magic squares and constructing magic squares from \(n\)-queens solutions. J. Recreat. Math. 24 (1992), 272-280.
[9] E. Dijkstra. EWD316: A Short Introduction to the Art of Programming. Available online at cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD316.9.html, 1971.
[10] H. E. Dudeney. Amusements in Mathematics. Edinburgh: Thomas Nelson & Sons, Limited, 1917.
[11] C. Erbas and M. Tanik. Generating solutions to the \(N\)-queens problem using 2-circulants. Math. Mag. 68 (1995), 343-356. · Zbl 0858.05002
[12] C. Erbas, M. Tanik, and Z. Aliyazicioglu. Linear congruence equations for the solutions of the \(N\)-queens problem. Inform. Process. Lett. 41 (1992), 301-306. · Zbl 0764.68102
[13] B.-J. Falkowski and L. Schmitz. A note on the Queens’ problem. Inform. Process. Let. 23 (1986), 39-46.
[14] J. Franel. \(n\)-queens solution. L’Intermédiaire des mathématiciens Ser. 1 1 (1894), 140-141.
[15] I. Gent, C. Jefferson, and P. Nightingale. Complexity of \(N\)-Queens Completion. J. Artificial Intelligence Research 59 (2017), 815-848. · Zbl 1418.68099
[16] K. C. Gupta and I. G. Ray. Cryptographically significant MDS matrices based on circulant and circulant-like matrices for lightweight applications. Cryptography and Communications 7 (2015), 257-287. · Zbl 1365.94432
[17] E. J. Hoffmann, J. C. Loessi, and R. C. Moore. Constructions for the solution of the \(m\) queens problem. Math. Mag. 42 (1969), 66-72. · Zbl 0331.05017
[18] D. Kahn. The Code Breakers. Macmillan, 1967.
[19] M. Larson. The Problem of Kings. Electron. J. Combin. 2 (1995), 10 pp. · Zbl 0827.05005
[20] Z. Luria. New bounds on the number of \(n\)-queens configurations. arxiv.org/abs/1705.05225.
[21] M. Kraitchik. Mathematical Recreations. Norton, 1942. · Zbl 1231.00014
[22] J. S. Madachy. Mathematical Recreations. Dover, 1979.
[23] G. Manjunath and G. V. Anand. Speech encryption using circulant transformations. Proceedings IEEE International Conference on Multimedia and Expo, Lausanne, Switzerland 1 (2002), 553-556.
[24] K. Namba and F. Lombardi. Non-binary orthogonal Latin square codes for a multilevel phase charge memory (PCM). IEEE Trans. Comput. 64 (2015), 2092-2097. · Zbl 1360.94419
[25] F. Nauck. Briefwechseln mit allen für alle. Illustrirte Zeitung 377(1850), 182.
[26] N. J. A. Sloane, editor. The On-Line Encyclopedia of Integer Sequences. Available online at oeis.org, 2018.
[27] E. Pauls. Das Maximalproblem der Damen auf dem Schachbrete. Deutsche Schachzeitung; Organ für das Gesammte Schachleben 29 (1874), 129-134.
[28] E. Pauls. Das Maximalproblem der Damen auf dem Schachbrete, II. Deutsche Schachzeitung; Organ für das Gesamte Schachleben 29 (1874), 257-267.
[29] C. Planck. The \(n\) queens problem. British Chess Mag. 20 (1900), 94-97.
[30] T. B. Preußer and M. R. Engelhardt. Putting queens in carry chains. J. Signal Processing Systems 88 (2017), 185-201.
[31] W. Qui. The \(n\) queens problem J. Math. (Wuhan) 6 (1986), 117-130. · Zbl 0614.05011
[32] I. Rivin, I. Vardi, and P. Zimmerman. The \(n\)-queens problem. Amer. Math. Monthly 101 (1994), 629-639. · Zbl 0825.68479
[33] F. Scheid. Some packing problems. Amer. Math. Monthly 67 (1960), 231-235. · Zbl 0092.01304
[34] A. J. Schwenk. Which rectangular chessboards have a knight’s tour? Math. Mag. 64 (1991), 325-332. · Zbl 0761.05041
[35] G. Sforza. Una regola pel gioco della n regine quando \(n\) è primo. Periodico di matematiche. Organo della Mathesis, Società Italiana di Scienze Mathematiche e Fisiche 4 (1925), 107-109. · JFM 51.0080.03
[36] R. Sosič and J. Gu. Fast search algorithms for the \(n\)-queens problem. IEEE Transactions on Systems, Man., and Cybernetics 21 (1991), 1572-1576. · Zbl 0792.68168
[37] E. Stern. Über irreguläre pandiagonale lateinische Quadrate mit Primzahlseitenlänge und ihre Bedeutung für das \(n\)-Königinnenproblem sowie für die Bildung magischer Quadrate. Nieuw Archief voor Wiskunde 19 (1938), 257-370. · Zbl 0018.00503
[38] J. J. Watkins. Across the Board: The Mathematics of Chessboard Problems. Princeton University Press, 2004. · Zbl 1108.00007
[39] A. Yaglom and I. Yaglom. Challenging Mathematical Problems with Elementary Solutions. Vol I: Combinatorial Analysis and Probability Theory (trans. James McCawley, Jr.) Holden-Day, 1964. · Zbl 0123.24201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.