×

The WZW model on random Regge triangulations. (English) Zbl 1077.83014

A possible characterization of the SU(2) Wess-Zumino-Witten model on a triangulated surface of genus \(g\) is proposed by exploiting a correspondence between random Regge triangulations (i.e. Regge triangulations with variable connectivity) and punctured Riemann surfaces. The authors discussed the quantum amplitude of the model at level \(\kappa=1\) by using techniques of boundary CFT.

MSC:

83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
83C45 Quantization of the gravitational field
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
81V17 Gravitational interaction in quantum theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] G. ’t Hooft, The scattering matrix approach for the quantum black hole: an overview, Int. J. Mod. Phys. A 11 (1996) 4623. gr-qc/9607022.; G. ’t Hooft, The scattering matrix approach for the quantum black hole: an overview, Int. J. Mod. Phys. A 11 (1996) 4623. gr-qc/9607022. · Zbl 1044.81683
[2] G. ’t Hooft, TransPlanckian particles and the quantization of time, Class. Quant. Grav. 16 (1999) 395. gr-qc/9805079.; G. ’t Hooft, TransPlanckian particles and the quantization of time, Class. Quant. Grav. 16 (1999) 395. gr-qc/9805079.
[3] G. ’t Hooft, Quantum gravity as a dissipative deterministic system, Class. Quant. Grav. 16 (1999) 3263. gr-qc/9903084.; G. ’t Hooft, Quantum gravity as a dissipative deterministic system, Class. Quant. Grav. 16 (1999) 3263. gr-qc/9903084. · Zbl 0937.83015
[4] T. Regge, R.M. Williams, Discrete structures in gravity, J. Math. Phys. 41 (2000) 3964. gr-qc/0012035.; T. Regge, R.M. Williams, Discrete structures in gravity, J. Math. Phys. 41 (2000) 3964. gr-qc/0012035. · Zbl 0984.83016
[5] G. Arcioni, M. Carfora, A. Marzuoli, M. O’Loughlin, Implementing holographic projections in Ponzano-Regge gravity, Nucl. Phys. B 619 (2001) 690. hep-th/0107112.; G. Arcioni, M. Carfora, A. Marzuoli, M. O’Loughlin, Implementing holographic projections in Ponzano-Regge gravity, Nucl. Phys. B 619 (2001) 690. hep-th/0107112. · Zbl 1066.83516
[6] D. Oriti, Boundary terms in the Barrett-Crane spin foam model and consistent gluing, Phys. Lett. B 532 (2002) 363. gr-qc/0201077.; D. Oriti, Boundary terms in the Barrett-Crane spin foam model and consistent gluing, Phys. Lett. B 532 (2002) 363. gr-qc/0201077.
[7] Kawamoto, N.; Nielsen, H. B.; Sato, N., Lattice Chern-Simons gravity via Ponzano-Regge model, Nucl. Phys. B, 555, 629 (1999) · Zbl 0951.83010
[8] M. Carfora, A. Marzuoli, Conformal modes in simplicial quantum gravity and the Weil-Petersson volume of moduli space, Adv. Math. Theor. Phys. 6 (2002) 357. math-ph/0107028.; M. Carfora, A. Marzuoli, Conformal modes in simplicial quantum gravity and the Weil-Petersson volume of moduli space, Adv. Math. Theor. Phys. 6 (2002) 357. math-ph/0107028. · Zbl 1031.83006
[9] M. Carfora, C. Dappiaggi, A. Marzuoli, The modular geometry of random Regge triangulations, Class. Quant. Grav. 19 (2002) 5195. gr-qc/0206077.; M. Carfora, C. Dappiaggi, A. Marzuoli, The modular geometry of random Regge triangulations, Class. Quant. Grav. 19 (2002) 5195. gr-qc/0206077. · Zbl 1017.83013
[10] M. Carfora, Discretized gravity and the SU(2) Wess-Zumino-Witten model, Class. Quant. Grav. 21 (2003) S109-S126.; M. Carfora, Discretized gravity and the SU(2) Wess-Zumino-Witten model, Class. Quant. Grav. 21 (2003) S109-S126.
[11] K. Gaw \(ȩ\) dzki, Conformal field theory: a case study, in: Y. Nutku, C. Saclioglu, T. Turgut (Eds.), Conformal Field Theory, Frontiers in Physics, vol. 102, Perseus Publ., Cambridge, MA, 2000, pp. 1-55.; K. Gaw \(ȩ\) dzki, Conformal field theory: a case study, in: Y. Nutku, C. Saclioglu, T. Turgut (Eds.), Conformal Field Theory, Frontiers in Physics, vol. 102, Perseus Publ., Cambridge, MA, 2000, pp. 1-55.
[12] M.R. Gaberdiel, A. Recknagel, G.M.T. Watts, The conformal boundary states for SU(2) at level 1, Nucl. Phys. B 626 (2002) 344. hep-th/0108102.; M.R. Gaberdiel, A. Recknagel, G.M.T. Watts, The conformal boundary states for SU(2) at level 1, Nucl. Phys. B 626 (2002) 344. hep-th/0108102. · Zbl 0985.81059
[13] Lewellen, D. C., Sewing constraints for conformal field theories on surfaces with boundaries, Nucl. Phys. B, 372, 654 (1992)
[14] Pradisi, G.; Sagnotti, A.; Stanev, Ya. S., Completeness conditions for boundary operators in 2D conformal field theory, Phys. Lett. B, 381, 97 (1996) · Zbl 0979.81585
[15] G. Felder, J. Frohlich, J. Fuchs, C. Schweigert, The geometry of WZW branes, J. Geom. Phys. 34 (2000) 162. hep-th/9909030.; G. Felder, J. Frohlich, J. Fuchs, C. Schweigert, The geometry of WZW branes, J. Geom. Phys. 34 (2000) 162. hep-th/9909030. · Zbl 1002.81042
[16] Alvarez-Gaumé, L.; Gomez, C.; Sierra, G., Quantum group interpretation of some conformal field theories, Phys. Lett. B, 220, 142 (1989) · Zbl 0689.17009
[17] S. Carlip, Quantum Gravity in 2+1 Dimensions, Cambridge Monograph on Mathematical Physics, Cambridge University Press, Cambridge, 1998.; S. Carlip, Quantum Gravity in 2+1 Dimensions, Cambridge Monograph on Mathematical Physics, Cambridge University Press, Cambridge, 1998. · Zbl 0919.53024
[18] J. Ambjörn, B. Durhuus, T. Jonsson, Quantum Geometry, Cambridge Monograph on Mathematical Physics, Cambridge University Press, Cambridge, 1997.; J. Ambjörn, B. Durhuus, T. Jonsson, Quantum Geometry, Cambridge Monograph on Mathematical Physics, Cambridge University Press, Cambridge, 1997.
[19] M. Mulase, M. Penkava, Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over \(Q̄\), Asian J. Math. 2 (1998) 875-920. math-ph/9811024v2.; M. Mulase, M. Penkava, Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over \(Q̄\), Asian J. Math. 2 (1998) 875-920. math-ph/9811024v2. · Zbl 0964.30023
[20] W.P. Thurston, Three-dimensional geometry and topology, in: S. Levy (Ed.), Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1997.; W.P. Thurston, Three-dimensional geometry and topology, in: S. Levy (Ed.), Princeton Mathematical Series, Princeton University Press, Princeton, NJ, 1997. · Zbl 0873.57001
[21] Witten, E., Nonabelian Bosonization in two dimensions, Commun. Math. Phys., 92, 455 (1984) · Zbl 0536.58012
[22] A.Yu. Alekseev, V. Schomerus, D-branes in the WZW model, Phys. Rev. D 60 (1999) 061901. hep-th/9812193.; A.Yu. Alekseev, V. Schomerus, D-branes in the WZW model, Phys. Rev. D 60 (1999) 061901. hep-th/9812193.
[23] K. Gawedzki, Boundary WZW, G/H, G/G and CS theories, Ann. Henri Poincare 3 (2002) 847. hep-th/0108044.; K. Gawedzki, Boundary WZW, G/H, G/G and CS theories, Ann. Henri Poincare 3 (2002) 847. hep-th/0108044.
[24] V. Schomerus, Lectures on branes in curved backgrounds, Class. Quant. Grav. 19 (2002) 5781. hep-th/0209241.; V. Schomerus, Lectures on branes in curved backgrounds, Class. Quant. Grav. 19 (2002) 5781. hep-th/0209241. · Zbl 1039.81046
[25] Gaberdiel, M. R., D-Branes from conformal field theory, Fortsch. Phys., 50, 783 (2002) · Zbl 1008.81079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.