×

zbMATH — the first resource for mathematics

Ruin probability via quantum mechanics approach. (English) Zbl 1401.91197
Summary: The finite time ruin probability in the classical surplus process setup with additional capital injections and withdrawals is investigated via the quantum mechanics approach. The results are compared with the Picard-Lefevre Appell polynomial approach and the traditional Markov chain approach. In addition, several optimization problems in the insurance market are numerically solved by applying the quantum mechanics approach.

MSC:
91B30 Risk theory, insurance (MSC2010)
91B80 Applications of statistical and quantum mechanics to economics (econophysics)
91G60 Numerical methods (including Monte Carlo methods)
65C99 Probabilistic methods, stochastic differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Asmussen, S.; Albrecher, H., Ruin Probabilities, Vol. 14, (2010), World scientific · Zbl 1247.91080
[2] Asmussen, S.; Binswanger, K., Simulation of ruin probabilities for subexponential claims, Astin Bull., 27, 02, 297-318, (1997)
[3] Baaquie, B. E., Quantum mechanics and option pricing, (Quantum Interaction, Proc. of QI-2008, (2005), College Publications London), 49-53, 2008
[4] Baaquie, B. E., Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates, (2007), Cambridge University Press · Zbl 1140.91035
[5] Cai, J.; Dickson, D. C., Ruin probabilities with a Markov chain interest model, Insurance Math. Econom., 35, 3, 513-525, (2004) · Zbl 1122.91340
[6] Cardoso, R. M.; dos Reis, A. D.E., Recursive calculation of time to ruin distributions, Insurance Math. Econom., 30, 2, 219-230, (2002) · Zbl 1074.91545
[7] Chang, K. L., Mathematical Structures of Quantum Mechanics, (2012), World Scientific
[8] Dickson, D. C., Insurance Risk and Ruin, (2005), Cambridge University Press · Zbl 1060.91078
[9] Dirac, P. A., The Lagrangian in Quantum Mechanics, 111-119, (2005), World Scientific Publishing Co
[10] Dufresne, F.; Gerber, H. U., Three methods to calculate the probability of ruin, Astin Bull., 19, 01, 71-90, (1989)
[11] Eisenberg, J.; Schmidli, H., Minimising expected discounted capital injections by reinsurance in a classical risk model, Scand. Actuar. J., 2011, 3, 155-176, (2011) · Zbl 1277.60145
[12] Feynman, R. P., Space-time approach to non-relativistic quantum mechanics, Rev. Modern Phys., 20, 2, 367, (1948) · Zbl 1371.81126
[13] Ignatov, Z. G.; Kaishev, V. K.; Krachunov, R. S., An improved finite-time ruin probability formula and its Mathematica implementation, Insurance Math. Econom., 29, 3, 375-386, (2001) · Zbl 1074.62528
[14] Lardizabal, C. F.; Souza, R. R., On a class of quantum channels, open random walks and recurrence, J. Stat. Phys., 159, 4, 772-796, (2015) · Zbl 1328.82025
[15] Nie, C.; Dickson, D. C.; Li, S., Minimizing the ruin probability through capital injections, Ann. Actuar. Sci., 5, 02, 195-209, (2011)
[16] Nie, C.; Dickson, D. C.; Li, S., The finite time ruin probability in a risk model with capital injections, Scand. Actuar. J., 2015, 4, 301-318, (2015) · Zbl 1398.91350
[17] Parthasarathy, K. R., An Introduction to Quantum Stochastic Calculus, (1992), Springer Basel AG · Zbl 0751.60046
[18] Picard, P.; Lefevre, C., The probability of ruin in finite time with discrete claim size distribution, Scand. Actuar. J., 1997, 1, 58-69, (1997) · Zbl 0926.62103
[19] Promislow, S. D., Fundamentals of Actuarial Mathematics, (2014), John Wiley & Sons · Zbl 1304.91006
[20] Rullire, D.; Loisel, S., Another look at the Picard-lefevre formula for finite-time ruin probabilities, Insurance Math. Econom., 35, 2, 187-203, (2004) · Zbl 1103.91048
[21] Zhou, M.; Yuen, K. C., Optimal reinsurance and dividend for a diffusion model with capital injection: variance premium principle, Econ. Modell., 29, 2, 198-207, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.