×

A finite element approximation for a class of degenerate elliptic equations. (English) Zbl 0941.65117

Authors’ abstract: We exhibit a finite element method fitting a suitable geometry naturally associated with a class of degenerate elliptic equations (usually called Grushin type equations) in a plane region, and we discuss the related error estimates.
Reviewer: P.Burda (Praha)

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J70 Degenerate elliptic equations
65N15 Error bounds for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Randolph E. Bank, Todd F. Dupont, and Harry Yserentant, The hierarchical basis multigrid method, Numer. Math. 52 (1988), no. 4, 427 – 458. · Zbl 0645.65074 · doi:10.1007/BF01462238
[2] Luca Capogna, Donatella Danielli, and Nicola Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 2 (1994), no. 2, 203 – 215. · Zbl 0864.46018 · doi:10.4310/CAG.1994.v2.n2.a2
[3] Luca Capogna, Donatella Danielli, and Nicola Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), no. 1, 147 – 154. · Zbl 0893.35023 · doi:10.1007/PL00004330
[4] Claudy Cancelier and Bruno Franchi, Subelliptic estimates for a class of degenerate elliptic integro-differential operators, Math. Nachr. 183 (1997), 19 – 41. · Zbl 0876.45006 · doi:10.1002/mana.19971830103
[5] Ennio De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25 – 43 (Italian). · Zbl 0084.31901
[6] Bruno Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), no. 1, 125 – 158. · Zbl 0751.46023
[7] K.O. Friedrichs, The identity of weak and strong estension of differential operators, Trans. Amer. Math. Soc. 55 (1944), 132-151. · Zbl 0061.26201
[8] B. Franchi, S. Gallot, and R. L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), no. 4, 557 – 571. · Zbl 0830.46027 · doi:10.1007/BF01450501
[9] Bruno Franchi, Cristian E. Gutiérrez, and Richard L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations 19 (1994), no. 3-4, 523 – 604. · Zbl 0822.46032 · doi:10.1080/03605309408821025
[10] Bruno Franchi, Cristian E. Gutiérrez, and Richard L. Wheeden, Two-weight Sobolev-Poincaré inequalities and Harnack inequality for a class of degenerate elliptic operators, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 5 (1994), no. 2, 167 – 175 (English, with English and Italian summaries). · Zbl 0811.46023
[11] Bruno Franchi and Ermanno Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), no. 4, 523 – 541. · Zbl 0552.35032
[12] B. Franchi, G. Lu, and R. L. Wheeden, Representation formulas and weighted Poincaré inequalities for Hörmander vector fields, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 2, 577 – 604 (English, with English and French summaries). · Zbl 0820.46026
[13] C. Fefferman and D. H. Phong, Subelliptic eigenvalue problems, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 590 – 606. · Zbl 0503.35071
[14] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 4, 527 – 568 (1988). · Zbl 0685.35046
[15] Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano, Champs de vecteurs, théorème d’approximation de Meyers-Serrin et phénomène de Lavrent\(^{\prime}\)ev pour des fonctionnelles dégénérées, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 6, 695 – 698 (French, with English and French summaries). · Zbl 0838.49009
[16] Bruno Franchi and Richard L. Wheeden, Compensation couples and isoperimetric estimates for vector fields, Colloq. Math. 74 (1997), no. 1, 9 – 27. · Zbl 0915.46028
[17] Pierre Grisvard, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solution of partial differential equations, III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975) Academic Press, New York, 1976, pp. 207 – 274.
[18] M. Gromov, Carnot-Carathéodory spaces seen from within, Sub-Riemannian Geometry, Birkhäuser, 1996, pp. 79-323. CMP 97:04 · Zbl 0864.53025
[19] Nicola Garofalo and Duy-Minh Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), no. 10, 1081 – 1144. , https://doi.org/10.1002/(SICI)1097-0312(199610)49:103.0.CO;2-A · Zbl 0880.35032
[20] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin-New York, 1977. Grundlehren der Mathematischen Wissenschaften, Vol. 224. · Zbl 0361.35003
[21] Velimir Jurdjevic, Geometric control theory, Cambridge Studies in Advanced Mathematics, vol. 52, Cambridge University Press, Cambridge, 1997. · Zbl 0940.93005
[22] Jürgen Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457 – 468. · Zbl 0111.09301 · doi:10.1002/cpa.3160130308
[23] W.F. Mitchell, Unified multilevel adaptive finite element method for elliptic problems, Ph.D. thesis, Report No. UIUCDSC-R-88-1436, Department of Computer Science, University of Illinois, Urbana, IL, 1988.
[24] William F. Mitchell, Optimal multilevel iterative methods for adaptive grids, SIAM J. Sci. Statist. Comput. 13 (1992), no. 1, 146 – 167. · Zbl 0746.65087 · doi:10.1137/0913009
[25] C. Mogavero and S. Polidoro, A finite difference method for a boundary value problem related to the Kolmogorov equation, Calcolo 32 (1995), 193-206. CMP 98:04 · Zbl 0890.65106
[26] Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103 – 147. · Zbl 0578.32044 · doi:10.1007/BF02392539
[27] J. Stoer and R. Bulirsch, Introduction to numerical analysis, 2nd ed., Texts in Applied Mathematics, vol. 12, Springer-Verlag, New York, 1993. Translated from the German by R. Bartels, W. Gautschi and C. Witzgall. · Zbl 0771.65002
[28] Linda Preiss Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), no. 3-4, 247 – 320. · Zbl 0346.35030 · doi:10.1007/BF02392419
[29] Chao Jiang Xu, On Harnack’s inequality for second-order degenerate elliptic operators, Chinese Ann. Math. Ser. A 10 (1989), no. 3, 359 – 365 (Chinese). · Zbl 0707.35024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.