×

Control for multifunctionality: bioinspired control based on feeding in Aplysia californica. (English) Zbl 1460.92015

Biol. Cybern. 114, No. 6, 557-588 (2020); correction ibid. 115, No. 2, 191 (2021).
Summary: Animals exhibit remarkable feats of behavioral flexibility and multifunctional control that remain challenging for robotic systems. The neural and morphological basis of multifunctionality in animals can provide a source of bioinspiration for robotic controllers. However, many existing approaches to modeling biological neural networks rely on computationally expensive models and tend to focus solely on the nervous system, often neglecting the biomechanics of the periphery. As a consequence, while these models are excellent tools for neuroscience, they fail to predict functional behavior in real time, which is a critical capability for robotic control. To meet the need for real-time multifunctional control, we have developed a hybrid Boolean model framework capable of modeling neural bursting activity and simple biomechanics at speeds faster than real time. Using this approach, we present a multifunctional model of Aplysia californica feeding that qualitatively reproduces three key feeding behaviors (biting, swallowing, and rejection), demonstrates behavioral switching in response to external sensory cues, and incorporates both known neural connectivity and a simple bioinspired mechanical model of the feeding apparatus. We demonstrate that the model can be used for formulating testable hypotheses and discuss the implications of this approach for robotic control and neuroscience.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aggarwal, S.; Chugh, N., Signal processing techniques for motor imagery brain computer interface: a review, Array, 1-2, January, 100003 (2019) · doi:10.1016/j.array.2019.100003
[2] Ayers J (1995) A reactive ambulatory robot architecture for operation in current and surge. In: Autonomous vehicles in mine countermeasures symposium, April 1995, pp 1-14. http://www.neurotechnology.neu.edu/nps95mcmmanuscript.html
[3] Ayers, J., A conservative biomimetic control architecture for autonomous underwater robots, Neurotechnol Biomimetic Robots (2002) · doi:10.7551/mitpress/4962.003.0019
[4] Ayers, JL; Davis, WJ, Neuronal control of locomotion in the lobster Homarus americanus, J Comp Physiol A, 115, 1, 29-46 (1977) · doi:10.1007/bf00667783
[5] Bässler, U., Functional principles of pattern generation for walking movements of stick insect forelegs: the role of the femoral chordotonal organ afferences, J Exp Biol, 136, 1, 125-147 (1988)
[6] Bazenkov, NI; Boldyshev, BA; Dyakonova, V.; Kuznetsov, OP, Simulating small neural circuits with a discrete computational model, Biol Cybern (2020) · Zbl 1451.92011 · doi:10.1007/s00422-020-00826-w
[7] Beck, JM; Pouget, A., Exact inferences in a neural implementation of a hidden Markov model, Neural Comput, 19, 5, 1344-1361 (2007) · Zbl 1116.62117 · doi:10.1162/neco.2007.19.5.1344
[8] Beer, RD; Chiel, HJ, Gallagher JC Evolution and analysis of model CPGs for walking: II. General principles and individual variability, J Comput Neurosci, 7, 2, 119-147 (1999) · doi:10.1023/A:1008920021246
[9] Beer, RD; Chiel, HJ; Quinn, RD; Espenschied, KS, A distributed neural network architecture for hexapod robot locomotion, Neural Comput, 4, 3, 356-365 (1992) · doi:10.1162/neco.1992.4.3.356
[10] Beer, RD; Chiel, HJ; Sterling, LS, A biological perspective on autonomous agent design, Robot Autonom Syst, 6, 1, 169-186 (1990) · doi:10.1016/S0921-8890(05)80034-X
[11] Bicanski, A.; Ryczko, D.; Knuesel, J.; Harischandra, N.; Charrier, V.; Ekeberg, Ö.; Cabelguen, JM; Ijspeert, AJ, Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics, Biol Cybern, 107, 5, 545-564 (2013) · doi:10.1007/s00422-012-0543-1
[12] Bidaye, SS; Laturney, M.; Chang, AK; Liu, Y.; Bockemühl, T.; Büschges, A.; Scott, K., Two brain pathways initiate distinct forward walking programs in drosophila, Neuron (2020) · doi:10.1016/j.neuron.2020.07.032
[13] Blümel, M.; Guschlbauer, C.; Daun-Gruhn, S.; Hooper, SL; Büschges, A., Hill-type muscle model parameters determined from experiments on single muscles show large animal-to-animal variation, Biol Cybern, 106, 10, 559-571 (2012) · doi:10.1007/s00422-012-0530-6
[14] Blümel, M.; Guschlbauer, C.; Hooper, SL; Büschges, A., Using individual-muscle specific instead of across-muscle mean data halves muscle simulation error, Biol Cybern, 106, 10, 573-585 (2012) · doi:10.1007/s00422-011-0460-8
[15] Blümel, M.; Hooper, SL; Guschlbauerc, C.; White, WE; Büschges, A., Determining all parameters necessary to build Hill-type muscle models from experiments on single muscles, Biol Cybern, 106, 10, 543-558 (2012) · doi:10.1007/s00422-012-0531-5
[16] Brosch, T.; Neumann, H., Interaction of feedforward and feedback streams in visual cortex in a firing-rate model of columnar computations, Neural Netw, 54, 11-16 (2014) · Zbl 1323.92040 · doi:10.1016/j.neunet.2014.02.005
[17] Brown, JW; Caetano-Anollés, D.; Catanho, M.; Gribkova, E.; Ryckman, N.; Tian, K.; Voloshin, M.; Gillette, R., Implementing goal-directed foraging decisions of a simpler nervous system in simulation, eNeuro, 5, 1, 1-10 (2018) · doi:10.1523/ENEURO.0400-17.2018
[18] Büschges, A., Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion, J Neurophysiol, 93, 3, 1127-1135 (2005) · doi:10.1152/jn.00615.2004
[19] Büschges, A.; Akay, T.; Gabriel, JP; Schmidt, J., Organizing network action for locomotion: insights from studying insect walking, Brain Res Rev, 57, 1, 162-171 (2008) · doi:10.1016/j.brainresrev.2007.06.028
[20] Cappellini, G.; Ivanenko, YP; Poppele, RE; Lacquaniti, F., Motor patterns in human walking and running, J Neurophysiol, 95, 6, 3426-3437 (2006) · doi:10.1152/jn.00081.2006
[21] Cash, D.; Carew, TJ, A quantitative analysis of the development of the central nervous system in juvenile Aplysia californica, J Neurobiol, 20, 1, 25-47 (1989) · doi:10.1002/neu.480200104
[22] Cataldo E, Byrne JH, Baxter DA (2006) Computational model of a central pattern generator. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4210 LNBI, 242-256. doi:10.1007/11885191_17
[23] Chiel, HJ; Beer, RD, The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment, Trends Neurosci, 20, 12, 553-557 (1997) · doi:10.1016/S0166-2236(97)01149-1
[24] Chiel, HJ; Beer, RD; Gallagher, JC, Evolution and analysis of model CPGs for walking: I. Dynamical modules, J Comput Neurosci, 7, 2, 99-118 (1999) · doi:10.1023/A:1008920021246
[25] Chiel, HJ; Crago, P.; Mansour, JM; Hathi, K., Biomechanics of a muscular hydrostat: a model of lapping by a reptilian tongue, Biol Cybern, 67, 5, 403-415 (1992) · doi:10.1007/BF00200984
[26] Chiel, HJ; Kupfermann, I.; Weiss, KR, An identified histaminergic neuron can modulate the outputs of buccal-cerebral interneurons in Aplysia via presynaptic inhibition, J Neurosci, 8, January, 49-63 (1988) · doi:10.1523/JNEUROSCI.08-01-00049.1988
[27] Chiel, HJ; Ting, LH; Ekeberg, Ö.; Hartmann, MJ, The brain in its body: motor control and sensing in a biomechanical context, J Neurosci, 29, 41, 12807-12814 (2009) · doi:10.1523/JNEUROSCI.3338-09.2009
[28] Chiel, HJ; Weiss, KR; Kupfermann, I., An identified histaminergic neuron modulates feeding motor circuitry in Aplysia, J Neurosci, 6, 8, 2427-2450 (1986) · doi:10.1523/jneurosci.06-08-02427.1986
[29] Church, PJ; Lloyd, PE, Activity of multiple identified motor neurons recorded intracellularly during evoked feeding-like motor programs in Aplysia, J Neurophysiol, 72, 4, 1794-1809 (1994) · doi:10.1152/jn.1994.72.4.1794
[30] Church, PJ; Whim, MD; Lloyd, PE, Modulation of neuromuscular transmission by conventional and peptide transmitters released from excitatory and inhibitory motor neurons in Aplysia, J Neurosci, 13, 7, 2790-2800 (1993) · doi:10.1523/jneurosci.13-07-02790.1993
[31] Connor, JA; Kretz, R.; Shapiro, E., Calcium levels measured in a presynaptic neurone of Aplysia under conditions that modulate transmitter release, J Physiol, 375, 1, 625-642 (1986) · doi:10.1113/jphysiol.1986.sp016137
[32] Costa, RM; Baxter, DA; Byrne, JH, Computational model of the distributed representation of operant reward memory: combinatoric engagement of intrinsic and synaptic plasticity mechanisms, Learn Memory, 27, 236-249 (2020) · doi:10.1101/lm.051367.120
[33] Cropper EC, Jing J, Weiss KR (2019) The feeding network of Aplysia. In: The Oxford handbook of invertebrate neurobiology, December. Oxford University Press, pp 400-422. doi:10.1093/oxfordhb/9780190456757.013.19
[34] Cullins, MJ; Chiel, HJ, Electrode fabrication and implantation in Aplysia californica for multi-channel neural and muscular recordings in intact, freely behaving animals, J Vis Exp, 40, e1791 (2010) · doi:10.3791/1791
[35] Cullins, MJ; Gill, JP; McManus, JM; Lu, H.; Shaw, KM; Chiel, HJ, Sensory feedback reduces individuality by increasing variability within subjects, Curr Biol, 25, 20, 2672-2676 (2015) · doi:10.1016/j.cub.2015.08.044
[36] Cullins, MJ; Shaw, KM; Gill, JP; Chiel, HJ, Motor neuronal activity varies least among individuals when it matters most for behavior, J Neurophysiol, 113, 3, 981-1000 (2015) · doi:10.1152/jn.00729.2014
[37] Dallidis, SE; Karafyllidis, IG, Boolean network model of the Pseudomonas aeruginosa quorum sensing circuits, IEEE Trans Nanobiosci, 13, 3, 343-349 (2014) · doi:10.1109/TNB.2014.2345439
[38] Danner, SM; Wilshin, SD; Shevtsova, NA; Rybak, IA, Central control of interlimb coordination and speed-dependent gait expression in quadrupeds, J Physiol, 594, 23, 6947-6967 (2016) · doi:10.1113/JP272787
[39] De Jong, H., Modeling and simulation of genetic regulatory systems: a literature review, J Comput Biol, 9, 1, 67-103 (2002) · doi:10.1089/10665270252833208
[40] Destexhe, A.; Sejnowski, TJ, The Wilson-Cowan model, 36 years later, Biol Cybern, 101, 1, 1-2 (2009) · doi:10.1007/s00422-009-0328-3
[41] Drushel, RF; Neustadter, DM; Hurwitz, I.; Crago, PE; Chiel, HJ, Kinematic models of the buccal mass of Aplysia californica, J Exp Biol, 201, Pt 10, 1563-83 (1998)
[42] Edwards, R.; Siegelmann, HT; Aziza, K.; Glass, L., Symbolic dynamics and computation in model gene networks, Chaos, 11, 1, 160-169 (2001) · doi:10.1063/1.1336498
[43] Eisenberg, E.; Hill, TL; Chen, Y., Cross-bridge model of muscle contraction. Quantitative analysis, Biophys J, 29, 2, 195-227 (1980) · doi:10.1016/S0006-3495(80)85126-5
[44] Ekeberg, Ö., A combined neuronal and mechanical model of fish swimming, Biol Cybern, 69, 5-6, 363-374 (1993) · Zbl 0780.92007 · doi:10.1007/bf00199436
[45] Ekeberg, Ö.; Wallén, P.; Lansner, A.; Tråvén, H.; Brodin, L.; Grillner, S., A computer based model for realistic simulations of neural networks, Biol Cybern, 65, 2, 81-90 (1991) · doi:10.1007/bf00202382
[46] Ermentrout, B., Neural networks as spatio-temporal pattern-forming systems, Rep Prog Phys, 61, 1998, 353-430 (2010)
[47] Evans, CG; Cropper, EC, Proprioceptive input to feeding motor programs in Aplysia, J Neurosci, 18, 19, 8016-8031 (1998) · doi:10.1523/jneurosci.18-19-08016.1998
[48] Feng K, Sen R, Minegishi R, Dübbert M, Bockemühl T, Büschges A, Dickson BJ (2020)Distributed control of motor circuits for backward walking in drosophila. bioRxiv. doi:10.1101/2020.07.11.198663. https://www.biorxiv.org/content/early/2020/07/12/2020.07.11.198663
[49] Gardner, D., Interconnections of identified multiaction interneurons in buccal ganglia of Aplysia, J Neurophysiol, 40, 2, 349-361 (1977) · doi:10.1152/jn.1977.40.2.349
[50] Georgopoulos, AP; Ashe, J.; Smyrnis, N.; Taira, M., The motor cortex and the coding of force, Science, 256, 5064, 1692-1695 (1992) · doi:10.1126/science.256.5064.1692
[51] Georgopoulos, AP; Kettner, RE; Schwartz, AB, Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population, J Neurosci, 8, 8, 2928-2937 (1988) · doi:10.1523/jneurosci.08-08-02928.1988
[52] Giacomantonio, CE; Goodhill, GJ, A Boolean model of the gene regulatory network underlying mammalian cortical area development, PLoS Comput Biol (2010) · doi:10.1371/journal.pcbi.1000936
[53] Gill, JP; Chiel, HJ, Rapid adaptation to changing mechanical load by ordered recruitment of identified motor neurons, eNeuro (2020) · doi:10.1523/ENEURO.0016-20.2020
[54] Gill, JP; Garcia, S.; Ting, LH; Wu, M.; Chiel, HJ, neurotic: neuroscience tool for interactive characterization, eNeuro (2020) · doi:10.1523/ENEURO.0085-20.2020
[55] Gill JP, Vorster APA, Lyttle DN, Keller TA, Stork SC, Chiel HJ (2018) Neural correlates of adaptive responses to changing load in feeding Aplysia. Poster presented at Society for Neuroscience 48th Annual Meeting, San Diego, CA. https://www.abstractsonline.com/pp8/#!/4649/presentation/17445
[56] Glaser JI, Chowdhury RH, Perich MG, Miller LE, Kording KP (2017) Machine learning for neural decoding. arXiv:1708.00909
[57] Golowasch, J.; Goldman, MS; Abbott, LF; Marder, E., Failure of averaging in the construction of a conductance-based neuron model, J Neurophysiol, 87, 2, 1129-1131 (2002) · doi:10.1152/jn.00412.2001
[58] Harischandra, N.; Cabelguen, JM; Ekeberg, Ö., A 3D musculo-mechanical model of the salamander for the study of different gaits and modes of locomotion, Front Neurorobotics, 4, DEC, 1-10 (2010) · doi:10.3389/fnbot.2010.00112
[59] Harris, SE; Sawhill, BK; Wuensche, A.; Kauffman, S., A model of transcriptional regulatory networks based on biases in the observed regulation rules, Complexity, 7, 4, 23-40 (2002) · doi:10.1002/cplx.10022
[60] Haselgrove, JC; Huxley, HE, X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle, J Mol Biol (1973) · doi:10.1016/0022-2836(73)90222-2
[61] Hausknecht M, Stone P (2015) Deep recurrent q-learning for partially observable MDPS. AAAI Fall Symposium—Technical Report, FS-15-06, pp 29-37
[62] Heuer, H.; Schmidt, RA; Ghodsian, D., Generalized motor programs for rapid bimanual tasks: a two-level multiplicative-rate model, Biol Cybern, 73, 4, 343-356 (1995) · doi:10.1007/BF00199470
[63] Hill, A., The heat of shortening and the dynamic constants of muscle, Proc R Soc Lond Ser B Biol Sci, 126, 843, 136-195 (1938) · doi:10.1098/rspb.1938.0050
[64] Hodgkin, A.; Huxley, A., A quantitative description of membrane current and its application to conduction and excitation in nerve, J Physiol, 117, 4, 500 (1952) · doi:10.1113/jphysiol.1952.sp004764
[65] Hooper, SL; Guschlbauer, C.; von Uckermann, G.; Büschges, A., Natural neural output that produces highly variable locomotory movements, J Neurophysiol, 96, 4, 2072-2088 (2006) · doi:10.1152/jn.00366.2006
[66] Hooper, SL; Guschlbauer, C.; von Uckermann, G.; Büschges, A., Different motor neuron spike patterns produce contractions with very similar rises in graded slow muscles, J Neurophysiol, 97, 2, 1428-1444 (2007) · doi:10.1152/jn.01014.2006
[67] Horchler, AD; Daltorio, KA; Chiel, HJ; Quinn, RD, Designing responsive pattern generators: stable heteroclinic channel cycles for modeling and control, Bioinspir Biomimetics, 10, 2, 026001 (2015) · doi:10.1088/1748-3190/10/2/026001
[68] Hosman T, Vilela M, Milstein D, Kelemen JN, Brandman DM, Hochberg LR, Simeral JD (2019) BCI decoder performance comparison of an LSTM recurrent neural network and a Kalman filter in retrospective simulation. In: International IEEE/EMBS conference on neural engineering, NER 2019-March, pp 1066-1071. doi:10.1109/NER.2019.8717140
[69] Huang, Z.; Satterlie, RA, Neuronal mechanisms underlying behavioral switching in a Pteropod mollusc, J Comp Physiol A, 166, 6, 875-887 (1990) · doi:10.1007/BF00187335
[70] Hunt, A.; Schmidt, M.; Fischer, M.; Quinn, R., A biologically based neural system coordinates the joints and legs of a tetrapod, Bioinspir Biomimetics (2015) · doi:10.1088/1748-3190/10/5/055004
[71] Hunt, A.; Szczecinski, N.; Quinn, R., Development and training of a neural controller for hind leg walking in a dog robot, Front Neurorobotics, 11, APR, 1-16 (2017) · doi:10.3389/fnbot.2017.00018
[72] Hurwitz, I.; Goldstein, RS; Susswein, AJ, Compartmentalization of pattern-initiation and motor functions in the b31 and b32 neurons of the buccal ganglia of Aplysia californica, J Neurophysiol, 71, 4, 1514-27 (1994) · doi:10.1152/jn.1994.71.4.1514
[73] Hurwitz, I.; Susswein, AJ, Adaptation of feeding sequences in Aplysia oculifera to changes in the load and width of food, J Exp Biol, 166, 1, 215-235 (1992)
[74] Hurwitz, I.; Susswein, AJ, B64, a newly identified central pattern generator element producing a phase switch from protraction to retraction in buccal motor programs of Aplysia californica, J Neurophysiol, 75, 4, 1327-1344 (1996) · doi:10.1152/jn.1996.75.4.1327
[75] Ivashko, DG; Prilutsky, BI; Markin, SN; Chapin, JK; Rybak, IA, Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion, Neurocomputing, 52, 621-629 (2003) · doi:10.1016/S0925-2312(02)00832-9
[76] Izhikevich, E., Simple model of spiking neurons, IEEE Trans Neural Netw, 14, 6, 1569-1572 (2003) · doi:10.1109/TNN.2003.820440
[77] Izhikevich, EM, Neural excitability, spiking and bursting, Int J Bifur Chaos, 10, 6, 1171-1266 (2000) · Zbl 1090.92505 · doi:10.1142/S0218127400000840
[78] Jaques, N.; Gu, S.; Turner, RE; Eck, D., Workshop track-ICLR 2017 tuning recurrent neural networks with re-inforcement learning, ICLR, 2017, 1-13 (2017)
[79] Jing, J.; Cropper, EC; Hurwitz, I.; Weiss, KR, The construction of movement with behavior-specific and behavior-independent modules, J Neurosci, 24, 28, 6315-6325 (2004) · doi:10.1523/JNEUROSCI.0965-04.2004
[80] Jing, J.; Cropper, EC; Weiss, KR, Network functions of electrical coupling present in multiple and specific sites in behavior-generating circuits (2017), Amsterdam: Elsevier Inc., Amsterdam · doi:10.1016/B978-0-12-803471-2.00005-9
[81] Jing, J.; Weiss, KR, Neural mechanisms of motor program switching in Aplysia, J Neurosci, 21, 18, 7349-7362 (2001) · doi:10.1523/jneurosci.21-18-07349.2001
[82] Jing, J.; Weiss, KR, Interneuronal basis of the generation of related but distinct motor programs in Aplysia: implications for current neuronal models of vertebrate intralimb coordination, J Neurosci, 22, 14, 6228-6238 (2002) · doi:10.1523/jneurosci.22-14-06228.2002
[83] Jing, J.; Weiss, KR, Generation of variants of a motor act in a modular and hierarchical motor network, Curr Biol, 15, 19, 1712-1721 (2005) · doi:10.1016/j.cub.2005.08.051
[84] Kabotyanski, EA; Baxter, DA; Byrne, JH, Identification and characterization of catecholaminergic neuron B65, which initiates and modifies patterned activity in the buccal ganglia of Aplysia, J Neurophysiol, 79, 2, 605-21 (1998) · doi:10.1152/jn.1998.79.2.605
[85] Kamali Sarvestani, I.; Kozlov, A.; Harischandra, N.; Grillner, S.; Ekeberg, Ö., A computational model of visually guided locomotion in lamprey, Biol Cybern, 107, 5, 497-512 (2013) · doi:10.1007/s00422-012-0524-4
[86] Kandel, E., Cellular basis of behavior: an introduction to behavioral neurobiology. Books in psychology (1976), San Francisco: W. H. Freeman, San Francisco
[87] Katzoff, A.; Ben-Gedalya, T.; Hurwitz, I.; Miller, N.; Susswein, YZ; Susswein, AJ, Nitric oxide signals that Aplysia have attempted to eat, a necessary component of memory formation after learning that food is inedible, J Neurophysiol, 96, 3, 1247-1257 (2006) · doi:10.1152/jn.00056.2006
[88] Kauffman, SA, The origins of order: self-organization and selection in evolution (1993), Oxford: Oxford University Press, Oxford
[89] Koch, C.; Segev, I., Methods in neuronal modeling: from ions to networks (1998), Cambridge: MIT Press, Cambridge
[90] Koehl, MA, Wave-swept shore: the rigors of life on a rocky coast (2006), California: University of California Press, California · doi:10.1525/9780520929999
[91] Kuo, AD, The relative roles of feedforward and feedback in the control of rhythmic movements, Mot Control, 6, 2, 129-145 (2002) · doi:10.1123/mcj.6.2.129
[92] Kupfermann, I., Feeding behavior in Aplysia: a simple system for the study of motivation, Behav Biol, 10, 1, 1-26 (1974) · doi:10.1016/S0091-6773(74)91644-7
[93] Latash, M., Progress in motor control: Bernstein’s traditions in movement studies, J Athletic Training, 34, 3, 1999 (1999)
[94] Li, L.; Van Den Bogert, EC; Caldwell, GE; Van Emmerik, RE; Hamill, J., Coordination patterns of walking and running at similar speed and stride frequency, Hum Mov Sci, 18, 1, 67-85 (1999) · doi:10.1016/S0167-9457(98)00034-7
[95] Lu, CW; Patil, PG; Chestek, CA; Hamani, C.; Moro, E., Chapter seven—current challenges to the clinical translation of brain machine interface technology, Emerging horizons in neuromodulation, International Review of Neurobiology, 137-160 (2012), New York: Academic Press, New York · doi:10.1016/B978-0-12-404706-8.00008-5
[96] Lu, H.; McManus, JM; Chiel, HJ, Extracellularly identifying motor neurons for a muscle motor pool in Aplysia californica, J Vis Exp, 73, e50189 (2013) · doi:10.3791/50189
[97] Lyttle, DN; Gill, JP; Shaw, KM; Thomas, PJ; Chiel, HJ, Robustness, flexibility, and sensitivity in a multifunctional motor control model, Biol Cybern, 111, 1, 25-47 (2017) · doi:10.1007/s00422-016-0704-8
[98] Mann, RA; Hagy, J., Biomechanics of walking, running, and sprinting, Am J Sports Med, 8, 5, 345-350 (1980) · doi:10.1177/036354658000800510
[99] Mantziaris C, Bockemühl T, Büschges A (2020) Central pattern generating networks in insect locomotion. Dev Neurobiol
[100] Marder, E.; Taylor, AL, Multiple models to capture the variability in biological neurons and networks, Nat Neurosci, 14, 2, 133-138 (2011) · doi:10.1038/nn.2735
[101] Markin SN, Klishko AN, Shevtsova NA, Lemay MA, Prilutsky BI, Rybak IA (2016) A neuromechanical model of spinal control of locomotion. In: Prilutsky, Boris I., Edwards, Donald H. (Eds.) Neuromechanical modeling of posture and locomotion. Springer, Berlin, pp 21-65
[102] McCulloch, WS; Pitts, W., A logical calculus of the ideas immanent in nervous activity, Bull Math Biophys, 5, 4, 115-133 (1943) · Zbl 0063.03860 · doi:10.1007/BF02478259
[103] McManus, JM; Lu, H.; Chiel, HJ, An in vitro preparation for eliciting and recording feeding motor programs with physiological movements in Aplysia californica, JoVE J Vis Exp, 70, e4320 (2012)
[104] McManus, JM; Lu, H.; Cullins, MJ; Chiel, HJ, Differential activation of an identified motor neuron and neuromodulation provide Aplysia’s retractor muscle an additional function, J Neurophysiol, 112, 4, 778-791 (2014) · doi:10.1152/jn.00148.2014
[105] Mihalaş, S.; Niebur, E., A generalized linear integrate-and-fire neural model produces diverse spiking behaviors, Neural Comput, 21, 3, 704-718 (2009) · Zbl 1156.92008 · doi:10.1162/neco.2008.12-07-680
[106] Molkov, YI; Bacak, BJ; Talpalar, AE; Rybak, IA, Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view, PLoS Comput Biol, 11, 5, e1004270 (2015) · doi:10.1371/journal.pcbi.1004270
[107] Morgan, PT; Jing, J.; Vilim, FS; Weiss, KR, Interneuronal and peptidergic control of motor pattern switching in Aplysia, J Neurophysiol, 87, 1, 49-61 (2002) · doi:10.1152/jn.00438.2001
[108] Moritani, T.; Oddsson, L.; Thorstensson, A., Phase-dependent preferential activation of the soleus and gastrocnemius muscles during hopping in humans, J Electromyogr Kinesiol, 1, 1, 34-40 (1991) · doi:10.1016/1050-6411(91)90024-Y
[109] Morton, D.; Chiel, H., Neural architectures for adaptive behavior, Trends Neurosci, 17, 10, 413-420 (1994) · doi:10.1016/0166-2236(94)90015-9
[110] Morton, DW; Chiel, HJ, In vivo buccal nerve activity that distinguishes ingestion from rejection can be used to predict behavioral transitions in Aplysia, J Comp Physiol A Sens Neural Behav Physiol, 172, 1, 17-32 (1993) · doi:10.1007/bf00214712
[111] Morton, DW; Chiel, HJ, The timing of activity in motor neurons that produce radula movements distinguishes ingestion from rejection in Aplysia, J Comp Physiol A, 173, 5, 519-536 (1993) · doi:10.1007/BF00197761
[112] Mulgaonkar Y, Araki B, Koh JS, Guerrero-Bonilla L, Aukes DM, Makineni A, Tolley MT, Rus D, Wood RJ, Kumar V (2016) The flying monkey: A mesoscale robot that can run, fly, and grasp. In: Proceedings—IEEE international conference on robotics and automation, 2016-June, pp 4672-4679. doi:10.1109/ICRA.2016.7487667
[113] Neustadter, DM; Drushel, RF; Crago, PE; Adams, BW; Chiel, HJ, A kinematic model of swallowing in Aplysia californica based on radula/odontophore kinematics and in vivo magnetic resonance images, J Exp Biol, 205, 20, 3177-3206 (2002)
[114] Neustadter, DM; Herman, RL; Drushel, RF; Chestek, DW; Chiel, HJ, The kinematics of multifunctionality: comparisons of biting and swallowing in Aplysia californica, J Exp Biol, 210, 2, 238-260 (2007) · doi:10.1242/jeb.02654
[115] Nicolelis, MA; Lebedev, MA, Principles of neural ensemble physiology underlying the operation of brain-machine interfaces, Nat Rev Neurosci, 10, 7, 530-540 (2009) · doi:10.1038/nrn2653
[116] Novakovic, VA; Sutton, GP; Neustadter, DM; Beer, RD; Chiel, HJ, Mechanical reconfiguration mediates swallowing and rejection in Aplysia californica, J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 192, 8, 857-870 (2006) · doi:10.1007/s00359-006-0124-7
[117] Oishi, K.; Klavins, E., Framework for engineering finite state machines in gene regulatory networks, ACS Synth Biol, 3, 9, 652-665 (2014) · doi:10.1021/sb4001799
[118] Packard, N.; Wolfram, S., Two-dimensional cellular automata, J Stat Phys, 38, March, 901-946 (1985) · Zbl 0625.68038 · doi:10.1201/9780429494093-6
[119] Payne, JL; Wagner, A., Constraint and contingency in multifunctional gene regulatory circuits, PLoS Comput Biol (2013) · doi:10.1371/journal.pcbi.1003071
[120] Pearson, K., Common principles of motor control in vertebrates and invertebrates, Annu Rev Neurosci, 16, 1, 265-297 (1993) · doi:10.1146/annurev.ne.16.030193.001405
[121] Pearson, KG, Central pattern generation: a concept under scrutiny, 167-185 (1987), Boston: Springer, Boston · doi:10.1007/978-1-4615-9492-5_10
[122] Piazzesi, G.; Lombardi, V., A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle, Biophys J, 68, 5, 1966-1979 (1995) · doi:10.1016/S0006-3495(95)80374-7
[123] Prescott, TJ; Ayers, JL; Grasso, F.; Verschure, PFMJ; Embodied, M., Chapter 17. Embodied models and neurorobotics, From neuron to cognition via computational neuroscience, 483-512 (2016), Cambridge: MIT Press, Cambridge
[124] Prinz, AA; Bucher, D.; Marder, E., Similar network activity from disparate circuit parameters, Nat Neurosci, 7, 12, 1345-1352 (2004) · doi:10.1038/nn1352
[125] Ravn, AP; Rischel, H.; Holdgaard, M.; Eriksen, TJ; Conrad, F.; Andersen, TO, Hybrid control of a robot—a case study, Hybrid Syst, II, 391-404 (1995) · doi:10.1007/3-540-60472-3_20
[126] Rivera Torres, PJ; Serrano Mercado, EI; Anido Rifón, L., Probabilistic Boolean network modeling of an industrial machine, J Intell Manuf, 29, 4, 875-890 (2018) · doi:10.1007/s10845-015-1143-4
[127] Röschard, J.; Roces, F., Cutters, carriers and transport chains: distance-dependent foraging strategies in the grass-cutting ant Atta vollenweideri, Insectes Soc, 50, 3, 237-244 (2003) · doi:10.1007/s00040-003-0663-7
[128] Rosin, DP; Rontani, D.; Gauthier, DJ; Schöll, E., Experiments on autonomous boolean networks, Chaos, 23, 2 (2013) · Zbl 1331.94092 · doi:10.1063/1.4807481
[129] Royakkers, L.; van Est, R., A literature review on new robotics: automation from love to war, Int J Soc Robot, 7, 5, 549-570 (2015) · doi:10.1007/s12369-015-0295-x
[130] Saadatpour, A.; Albert, I.; Albert, R., Attractor analysis of asynchronous Boolean models of signal transduction networks, J Theor Biol, 266, 4, 641-656 (2010) · Zbl 1407.92058 · doi:10.1016/j.jtbi.2010.07.022
[131] Kleene SC (1951) Representation of events in nerve nets and finite automata. Technical report, U.S. Air Force Project RAND
[132] Schwartz, AB; Kettner, RE; Georgopoulos, AP, Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement, J Neurosci, 8, 8, 2913-2927 (1988) · doi:10.1523/jneurosci.08-08-02913.1988
[133] Selverston, AI, Dynamic biological networks: the stomatogastric nervous system (1992), Cambridge: MIT Press, Cambridge
[134] Selverston, AI; Russell, DF; Miller, JP; King, DG, The stomatogastric nervous system: structure and function of a small neural network, Prog Neurobiol, 7, 215-289 (1976) · doi:10.1016/0301-0082(76)90008-3
[135] Sewak M (2019) Deep reinforcement learning. In: Deep reinforcement learning, pp 1-9. doi:10.1007/978-981-13-8285-7 · Zbl 1418.68002
[136] Shadmehr R (1970) A mathematical muscle model. ReCALL
[137] Shaw, KM; Lyttle, DN; Gill, JP; Cullins, MJ; Mcmanus, JM; Lu, H.; Thomas, PJ; Chiel, HJ, The significance of dynamical architecture for adaptive responses to mechanical loads during rhythmic behavior, J Comput Neurosci, 38, 25-51 (2015) · Zbl 1409.92020 · doi:10.1007/s10827-014-0519-3
[138] Shea-Brown, E.; Rinzel, J.; Rakitin, BC; Malapani, C., A firing rate model of Parkinsonian deficits in interval timing, Brain Res, 1070, 1, 189-201 (2006) · doi:10.1016/j.brainres.2005.10.070
[139] Shev M, Strang G (2016) “Operator splitting.” Splitting Methods in Communication, Imaging, Science, and Engineering. Springer 95-114 · Zbl 1372.65236
[140] Shoham, S.; Paninski, LM; Fellows, MR; Hatsopoulos, NG; Donoghue, JP; Normann, RA, Statistical encoding model for a primary motor cortical brain-machine interface, IEEE Trans Biomed Eng, 52, 7, 1312-1322 (2005) · doi:10.1109/TBME.2005.847542
[141] Siegle, L.; Schwab, JD; Kühlwein, SD; Lausser, L.; Tümpel, S.; Pfister, AS; Kühl, M.; Kestler, HA, A boolean network of the crosstalk between IGF and wnt signaling in aging satellite cells, PLoS ONE, 13, 3, 1-24 (2018) · doi:10.1371/journal.pone.0195126
[142] Stamhuis, E.; Aerts, P.; Nauwelaerts, S., Swimming and jumping in a semi-aquatic frog, Animal Biol, 55, 1, 3-15 (2005) · doi:10.1163/1570756053276934
[143] Stehouwer, DJ, Development of anuran locomotion: ethological and neurophysiological considerations, J Neurobiol, 23, 10, 1467-1485 (1992) · doi:10.1002/neu.480231008
[144] Stewart, HL, Consequences of flexural stiffness and buoyancy for hydrodynamic forces, light interception and dispersal of a tropical alga (2004), Berkeley: University of California, Berkeley
[145] Sussillo, D.; Nuyujukian, P.; Fan, JM; Kao, JC; Stavisky, SD; Ryu, S.; Shenoy, K., A recurrent neural network for closed-loop intracortical brain-machine interface decoders, J Neural Eng (2012) · doi:10.1088/1741-2560/9/2/026027
[146] Susswein, AJ; Byrne, JH, Identification and characterization of neurons initiating patterned neural activity in the buccal ganglia of Aplysia, J Neurosci, 8, 6, 2049-2061 (1988) · doi:10.1523/JNEUROSCI.08-06-02049.1988
[147] Susswein, AJ; Chiel, HJ, Nitric oxide as a regulator of behavior: new ideas from Aplysia feeding, Prog Neurobiol, 97, 3, 304-317 (2012) · doi:10.1016/j.pneurobio.2012.03.004
[148] Sutton, GP; Macknin, JB; Gartman, SS; Sunny, GP; Beer, RD; Crago, PE; Neustadter, DM; Chiel, HJ, Passive hinge forces in the feeding apparatus of Aplysia aid retraction during biting but not during swallowing, J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 190, 6, 501-514 (2004) · doi:10.1007/s00359-004-0517-4
[149] Sutton, GP; Mangan, EV; Neustadter, DM; Beer, RD; Crago, PE; Chiel, HJ, Neural control exploits changing mechanical advantage and context dependence to generate different feeding responses in Aplysia, Biol Cybern, 91, 5, 333-345 (2004) · Zbl 1095.92018 · doi:10.1007/s00422-004-0517-z
[150] Szczecinski NS, Chrzanowski DM, Cofer DW, Terrasi AS, Moore DR, Martin JP, Ritzmann RE, Quinn RD (2015) Introducing mantisbot: Hexapod robot controlled by a high-fidelity, real-time neural simulation. In: IEEE international conference on intelligent robots and systems, 2015-December (September), pp 3875-3881. doi:10.1109/IROS.2015.7353922
[151] Szczecinski, NS; Hunt, AJ; Quinn, RD, A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion, Front Neurorobotics (2017) · doi:10.3389/fnbot.2017.00037
[152] Szczecinski, NS; Quinn, RD, Leg-local neural mechanisms for searching and learning enhance robotic locomotion, Biol Cybern, 112, 1-2, 99-112 (2018) · doi:10.1007/s00422-017-0726-x
[153] Tal, D.; Schwartz, EL, Computing with the leaky integrate-and-fire neuron: logarithmic computation and multiplication, Neural Comput, 9, 2, 305-318 (1997) · Zbl 0869.68085 · doi:10.1162/neco.1997.9.2.305
[154] Teyke, T.; Weiss, KR; Kupfermann, I., Activity of identified cerebral neuron correlates with food-induced arousal in Aplysia, Neurosci Lett, 133, 2, 307-310 (1991) · doi:10.1016/0304-3940(91)90595-K
[155] Verstappen, M.; Aerts, P.; Van Damme, R., Terrestrial locomotion in the black-billed magpie: kinematic analysis of walking, running and out-of-phase hopping, J Exp Biol, 203, 14, 2159-2170 (2000)
[156] Wang Y, Truccolo W, Borton DA (2018) Decoding hindlimb kinematics from primate motor cortex using long short-term memory recurrent neural networks. In: Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2018-July, 1944-1947. doi:10.1109/EMBC.2018.8512609
[157] Warman, EN; Chiel, HJ, A new technique for chronic single-unit extracellular recording in freely behaving animals using pipette electrodes, J Neurosci Methods, 57, 2, 161-169 (1995) · doi:10.1016/0165-0270(94)00144-6
[158] Webster VA, Lonsberry AJ, Horchler AD, Shaw KM, Chiel HJ, Quinn RD (2013) A segmental mobile robot with active tensegrity bending and noise-driven oscillators. In: 2013 IEEE/ASME international conference on advanced intelligent mechatronics: mechatronics for human wellbeing, AIM 2013. Wollongong, Australia, pp 1373-1380. doi:10.1109/AIM.2013.6584286
[159] Weiss, KR; Chiel, HJ; Koch, U.; Kupfermann, I., Activity of an identified histaminergic neuron, and its possible role in arousal of feeding behavior in semi-intact Aplysia, J Neurosci, 6, August, 2403-2415 (1986) · doi:10.1523/JNEUROSCI.06-08-02403.1986
[160] Wilson, HR; Cowan, JD, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys J, 12, 1, 1-24 (1972) · doi:10.1016/S0006-3495(72)86068-5
[161] Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13(2):55-80. doi:10.1007/BF00288786 · Zbl 0281.92003
[162] Wood, KC; Blackwell, JM; Geffen, MN, Cortical inhibitory interneurons control sensory processing, Curr Opin Neurobiol, 46, 200-207 (2017) · doi:10.1016/j.conb.2017.08.018
[163] Xie, Z.; Schwartz, O.; Prasad, A., Decoding of finger trajectory from ECoG using deep learning, J Neural Eng (2018) · doi:10.1088/1741-2552/aa9dbe
[164] Ye, H.; Morton, DW; Chiel, HJ, Neuromechanics of coordination during swallowing in Aplysia californica, J Neurosci, 26, 5, 1470-1485 (2006) · doi:10.1523/JNEUROSCI.3691-05.2006
[165] Ye, H.; Morton, DW; Chiel, HJ, Neuromechanics of multifunctionality during rejection in Aplysia californica, J Neurosci, 26, 42, 10743-10755 (2006) · doi:10.1523/JNEUROSCI.3143-06.2006
[166] Yu, SN; Crago, P.; Chiel, H., A nonisometric kinetic model for smooth muscle, Am J Physiol Cell Physiol, 272, 3, C1025-C1039 (1997) · doi:10.1152/ajpcell.1997.272.3.C1025
[167] Yu, SN; Crago, PE; Chiel, HJ, Biomechanical properties and a kinetic simulation model of the smooth muscle I2 in the buccal mass of Aplysia, Biol Cybern, 81, 505-513 (1999) · doi:10.1007/s004220050579
[168] Zahalak, GI; Ma, SP, Muscle activation and contraction: constitutive relations based directly on cross-bridge kinetics, J Biomech Eng, 112, 1, 52-62 (1990) · doi:10.1115/1.2891126
[169] Zajac, FE, Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control, Crit Rev Biomed Eng, 17, 4, 359-411 (1989)
[170] Ziv, I.; Baxter, DA; Byrne, JH, Simulator for neural networks and action potentials: description and application, J Neurophysiol, 71, 1, 294-308 (1994) · doi:10.1152/jn.1994.71.1.294
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.