×

A new lattice Boltzmann model for solving the coupled viscous Burgers’ equation. (English) Zbl 1395.76070

Summary: In this paper, a new lattice Boltzmann model for the coupled nonlinear system of viscous Burgers’ equation is proposed by using the double evolutionary equations. Through selecting equilibrium distribution functions and amending functions properly, the governing evolution system can be recovered correctly according to our proposed scheme, in which the Chapman-Enskog expansion is employed. The effects of space and time resolutions on the accuracy and stability of the model are numerically investigated in detail. The numerical solutions for various initial and boundary conditions are calculated and validated against analytic solutions or other numerical solutions reported in previous studies. It is found that the numerical results agree well with the analytic solutions, which indicates the potential of the present algorithm for solving the coupled nonlinear system of viscous Burgers’ equation.

MSC:

76M28 Particle methods and lattice-gas methods
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ablowitz, M. J.; Clarkson, P. A., Solitons. nonlinear evolution equations and inverse scattering, (1991), Cambridge University Press Cambridge · Zbl 0762.35001
[2] Debtnath, L., Nonlinear partial differential equations for scientist and engineers, (1997), Birkhäuser Boston · Zbl 0892.35001
[3] Tao, W. Q., Recent advances in computational heat transfer, (2000), Science Press Beijing, (in Chinese)
[4] Whitham, G. B., Variational methods and applications to water waves, Proc. R. Soc. Lond. Ser. A, 299, 6, (1967) · Zbl 0163.21104
[5] Kaup, D. J., A higher-order water-wave equation and the method for solving it, Progr. Theoret. Phys., 54, 396, (1975) · Zbl 1079.37514
[6] Nee, J.; Duan, J., Limit set of trajectories of the coupled viscous burgers’ equations, Appl. Math. Lett., 11, 57, (1998) · Zbl 1076.35537
[7] Burger, J. M., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. I, 1, 171, (1948)
[8] Cole, J. D., On a quasilinear parabolic equations occurring in aerodynamics, Quart. Appl. Math., 9, 225, (1951) · Zbl 0043.09902
[9] Kaya, D., An explicit solution of coupled viscous burgers’ equations by the decomposition method, Int. J. Math. Math. Sci., 27, 675, (2001) · Zbl 0997.35077
[10] Abdoua, M. A.; Soliman, A. A., Variational iteration method for solving burger’s and coupled burger’s equations, J. Comput. Appl. Math., 181, 245, (2005) · Zbl 1072.65127
[11] Soliman, A. A., The modified extended tanh-function method for solving Burgers-type equations, Physica A, 361, 394, (2006)
[12] Abazari, R.; Borhanifar, A., Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method, Comput. Math. Appl., 59, 2711, (2010) · Zbl 1193.65178
[13] Dehghan, M.; Hamidi, A.; Shakourifar, M., The solution of coupled burgers’ equations using Adomian-pade technique, Appl. Math. Comput., 189, 1034, (2007) · Zbl 1122.65388
[14] Khater, A. H.; Temsah, R. S.; Hassan, M. M., A Chebyshev spectral collocation method for solving burgers’-type equations, J. Comput. Appl. Math., 222, 333, (2008) · Zbl 1153.65102
[15] Rashid, A.; Ismail, A. I.B., A Fourier pseudospectral method for solving coupled viscous Burgers equations, Comput. Methods Appl. Math., 9, 412, (2009) · Zbl 1183.35245
[16] Mittal, R. C.; Arora, G., Numerical solution of the coupled viscous burgers’ equation, Commun. Nonlinear Sci. Numer. Simul., 16, 1304, (2011) · Zbl 1221.65264
[17] Zhang, R. P.; Jun, X. J.; Zhao, G. Z., Local discontinuous Galerkin method for solving Burgers and coupled Burgers equations, Chin. Phys. B, 20, 110205, (2011) · Zbl 1265.35314
[18] Doolen, G. D., Lattice gas methods: theory application and hardware, (1991), MIT Press Cambridge, Mass
[19] Aidun, C. K.; Clausen, J. R., Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., 42, 439, (2010) · Zbl 1345.76087
[20] Benzi, R.; Succi, S.; Vergasola, M., The lattice Boltzmann equation: theory and application, Phys. Rep., 222, 145, (1992)
[21] Chen, S. Y.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329, (1998) · Zbl 1398.76180
[22] Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond, (2001), Oxford University Press New York · Zbl 0990.76001
[23] Xu, A. G.; Zhang, G. C.; Gan, Y. B.; Chen, F.; Yu, X. J., Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys., 7, 582, (2012)
[24] Guo, Z. L.; Zheng, C. G.; Shi, B. C., Thermal lattice Boltzmann equation for low Mach number flows: decoupling model, Phys. Rev. E, 75, 036704, (2007)
[25] Tian, F. B.; Luo, H. X.; Zhu, L. D.; Liao, J. C.; Lu, X. Y., An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments, J. Comput. Phys., 230, 7266, (2011) · Zbl 1327.76106
[26] Stratford, K.; Pagonabarraga, I., Parallel simulation of particle suspensions with the lattice Boltzmann method, Comput. Math. Appl., 55, 1585, (2008) · Zbl 1142.76456
[27] Guo, Z. L.; Zhao, T. S., Lattice Boltzmann model for incompressible flows through porous media, Phys. Rev. E, 66, 036304, (2002)
[28] Gan, Y. B.; Xu, A. G.; Zhang, G. C.; Li, Y. J., Lattice Boltzmann study on Kelvin-Helmholtz instability: roles of velocity and density gradients, Phys. Rev. E, 83, 056704, (2011)
[29] Pan, X. F.; Xu, A. G.; Zhang, G. C.; Jiang, S., Lattice Boltzmann approach to high-speed compressible flows, Internat. J. Modern Phys. C, 18, 1747, (2007) · Zbl 1170.76345
[30] Gan, Y. B.; Xu, A. G.; Zhang, G. C.; Yu, X. J.; Li, Y. J., Two-dimensional lattice Boltzmann model for compressible flows with high Mach number, Physica A, 387, 1721, (2008)
[31] Chen, F.; Xu, A. G.; Zhang, G. C.; Gan, Y. B.; Cheng, T.; Li, Y. J., Highly efficient lattice Boltzmann model for compressible fluids: two-dimensional case, Commun. Theor. Phys. (Beijing), 52, 681, (2009) · Zbl 1253.76114
[32] Chen, F.; Xu, A. G.; Zhang, G. C.; Li, Y. J., Three-dimensional lattice Boltzmann model for high-speed compressible flows, Commun. Theor. Phys. (Beijing), 54, 1121, (2010) · Zbl 1309.76178
[33] Chen, F.; Xu, A. G.; Zhang, G. C.; Li, Y. J., Multiple-relaxation-time lattice Boltzmann approach to Richtmyer-Meshkov instability, Commun. Theor. Phys. (Beijing), 55, 325, (2011) · Zbl 1264.76092
[34] Chen, F.; Xu, A. G.; Zhang, G. C.; Li, Y. J., Flux limiter lattice Boltzmann for compressible flows, Commun. Theor. Phys. (Beijing), 56, 333, (2011) · Zbl 1247.76068
[35] Gan, Y. B.; Xu, A. G.; Zhang, G. C.; Li, Y. J., Flux limiter lattice Boltzmann scheme approach to compressible flows with flexible specific-heat ratio and Prandtl number, Commun. Theor. Phys. (Beijing), 56, 490, (2011) · Zbl 1247.76069
[36] Chen, F.; Xu, A. G.; Zhang, G. C.; Li, Y. J., Prandtl number effects in MRT lattice Boltzmann models for shocked and unshocked compressible fluids, Theor. Appl. Mech. Lett., 1, 052004, (2011)
[37] Chen, F.; Xu, A. G.; Zhang, G. C.; Li, Y. J.; Succi, S., Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett., 90, 54003, (2010)
[38] Chen, F.; Xu, A. G.; Zhang, G. C.; Li, Y. J., Multiple-relaxation-time lattice Boltzmann model for compressible fluids, Phys. Lett. A, 375, 2129, (2011)
[39] Gan, Y. B.; Xu, A. G.; Zhang, G. C.; Yang, Y., Lattice BGK kinetic model for high-speed compressible flows: hydrodynamic and nonequilibrium behaviors, Europhys. Lett., 103, 24003, (2013)
[40] Li, Q.; He, Y. L.; Tang, G. H.; Tao, W. Q., Lattice Boltzmann modeling of microchannel flows in the transition flow regime, Microfluid Nanofluid, 10, 607, (2011)
[41] Xu, A. G.; Gonnella, G.; Lamura, A., Phase-separating binary fluids under oscillatory shear, Phys. Rev. E, 67, 056105, (2003) · Zbl 1040.76527
[42] Xu, A. G., Rheology and structure of quenched binary mixtures under oscillatory shear, Commun. Theor. Phys. (Beijing), 39, 729, (2003)
[43] Xu, A. G.; Gonnella, G.; Lamura, A., Phase separation of incompressible binary fluids with lattice Boltzmann methods, Physica A, 331, 10, (2004) · Zbl 0978.76071
[44] Xu, A. G.; Gonnella, G.; Lamura, A., Numerical study of the ordering properties of lamellar phase, Physica A, 334, 750, (2004) · Zbl 0961.82007
[45] Xu, A. G.; Gonnella, G.; Lamura, A., Simulations of complex fluids by mixed lattice Boltzmann-finite difference methods, Physica A, 362, 42, (2006) · Zbl 0978.76071
[46] Xu, A. G.; Gonnella, G.; Lamura, A.; Amati, G.; Massaioli, F., Scaling and hydrodynamic effects in lamellar ordering, Europhys. Lett., 71, 651, (2005) · Zbl 1130.82337
[47] Xu, A. G.; Gonnella, G.; Lamura, A., Morphologies and flow patterns in quenching of lamellar systems with shear, Phys. Rev. E, 74, 011505, (2006) · Zbl 0978.76071
[48] Gan, Y. B.; Xu, A. G.; Zhang, G. C.; Li, Y. J.; Li, H., Phase separation in thermal systems: a lattice Boltzmann study and morphological characterization, Phys. Rev. E, 84, 046715, (2011)
[49] Gan, Y. B.; Xu, A. G.; Zhang, G. C.; Zhang, P.; Li, Y. J., Lattice Boltzmann study of thermal phase separation: effects of heat conduction, viscosity and Prandtl number, Europhys. Lett., 97, 44002, (2012)
[50] Li, Q.; Luo, K. H.; Li, X. J., Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows, Phys. Rev. E, 86, 016709, (2012)
[51] Gan, Y. B.; Xu, A. G.; Zhang, G. C.; Li, Y. J., Physical modeling of multiphase flow via lattice Boltzmann method: numerical effects, equation of state and boundary conditions, Front. Phys., 7, 481, (2012)
[52] Li, Q.; Luo, K. H.; Gao, Y. J.; He, Y. L., Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows, Phys. Rev. E, 85, 026704, (2012)
[53] Li, Q.; Luo, K. H.; Li, X. J., Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model, Phys. Rev. E, 87, 053301, (2013)
[54] Li, Q.; Luo, K. H.; He, Y. L.; Gao, Y. J.; Tao, W. Q., Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices, Phys. Rev. E, 85, 016710, (2012)
[55] Gan, Y. B.; Xu, A. G.; Zhang, G. C.; Li, Y. J.; Li, H., Lattice Boltzmann study on Kelvin-Helmholtz instability: roles of velocity and density gradients, Phys. Rev. E, 83, 056704, (2011)
[56] Yan, B.; Xu, A. G.; Zhang, G. C.; Ying, Y. J.; Li, Hua, Lattice Boltzmann model for combustion and detonation, Front. Phys., 8, 94, (2013)
[57] Shi, B. C.; Guo, Z. L., Lattice Boltzmann model for nonlinear convection-diffusion equations, Phys. Rev. E, 79, 016701, (2009)
[58] Shi, B. C.; Guo, Z. L., Lattice Boltzmann simulation of some nonlinear convection-diffusion equations, Comput. Math. Appl., 61, 3443, (2011) · Zbl 1225.76243
[59] Liu, F.; Shi, W. P., Numerical solutions of two-dimensional burgers’ equations by lattice Boltzmann method, Commun. Nonlinear Sci. Numer. Simul., 16, 150, (2011) · Zbl 1221.76165
[60] Duan, Y. L.; Liu, R. X., Lattice Boltzmann model for two-dimensional unsteady burgers’ equation, J. Comput. Appl. Math., 206, 432, (2007) · Zbl 1115.76064
[61] Ma, C. F., A new lattice Boltzmann model for KdV-Burgers equation, Chin. Phys. Lett., 22, 2313, (2005)
[62] Chai, Z. H.; Shi, B. C., A novel lattice Boltzmann model for the Poisson equation, Appl. Math. Model, 32, 2050, (2008) · Zbl 1145.82344
[63] Yan, G. W., A lattice Boltzmann equation for waves, J. Comput. Phys., 161, 61, (2000) · Zbl 0969.76076
[64] Zhang, J. Y.; Yan, G. W.; Shi, X. B., Lattice Boltzmann model for wave propagation, Phys. Rev. E, 80, 026706, (2009)
[65] Shi, X. B.; Yan, G. W.; Zhang, J. Y., A multi-energy-level lattice Boltzmann model for two-dimensional wave equation, Internat. J. Numer. Methods Fluids, 64, 148, (2010) · Zbl 1375.76151
[66] Lai, H. L.; Ma, C. F., Lattice Boltzmann model for generalized nonlinear wave equations, Phys. Rev. E, 84, 046708, (2011)
[67] Lai, H. L.; Ma, C. F., Lattice Boltzmann method for the generalized Kuramoto-Sivashinsky equation, Physica A, 388, 1405, (2009)
[68] Lai, H. L.; Ma, C. F., The lattice Boltzmann model for the second-order Benjamin-Ono equations, J. Stat. Mech., P04011, (2010)
[69] Wu, F. F; Shi., W. P.; Liu, F., A lattice Boltzmann model for the Fokker-Planck equation, Commun. Nonlinear Sci. Numer. Simul., 17, 2776, (2012) · Zbl 1252.35265
[70] Succi, S.; Benzi, R., Lattice Boltzmann equation for quantum mechanics, Physica D, 69, 327, (1993) · Zbl 0798.76080
[71] Palpacelli, S.; Succi, S., Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates in random potentials, Phys. Rev. E, 77, 066708, (2008)
[72] Shi, B. C.; Guo, Z. L., Lattice Boltzmann model for the one-dimensional nonlinear Dirac equation, Phys. Rev. E, 79, 066704, (2009)
[73] Dellar, P. J.; Lapitski, D.; Palpacelli, S.; Succi, S., Isotropy of three-dimensional quantum lattice Boltzmann schemes, Phys. Rev. E, 83, 046706, (2011)
[74] Chai, Z. H.; Shi, B. C.; Zheng, L., A unified lattice Boltzmann model for some nonlinear partial differential equations, Chaos Solitons Fractals, 36, 874, (2008) · Zbl 1139.35333
[75] Zhang, J. Y.; Yan, G. W., A lattice Boltzmann model for the Burgers-Fisher equation, Chaos, 20, 023129, (2010) · Zbl 1311.35268
[76] Duan, Y. L.; Kong, L. H.; Zhang, R., A lattice Boltzmann model for the generalized Burgers-Huxley equation, Physica A, 391, 625, (2012)
[77] Shen, Z. J.; Yuan, G. W.; Shen, L. J., Lattice Boltzmann method for Burgers equation, Chin. J. Mech. Comput. Phys., 17, 166, (2000)
[78] Sterling, J. D.; Chen, S. Y., Stability analysis of lattice Boltzmann methods, J. Comput. Phys., 123, 196, (1996) · Zbl 0840.76078
[79] Guo, Z. L.; Zheng, C. G.; Shi, B. C., Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chin. Phys., 11, 366, (2002)
[80] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439, (1988) · Zbl 0653.65072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.