×

zbMATH — the first resource for mathematics

Hierarchical gradient methods for nonlinear LSQ problems. (English) Zbl 0781.65050
The author proposes a variant of the gradient algorithm that consists in a succession of cycles. On an iteration of the cycle, only a subset of the variables is changed; all variables must have changed at the end of a cycle. He applies his idea to nonlinear least squares problems.
MSC:
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bauer, F. L. (1965). Elimination with weighted row combinations for solving linear equations and least-squares problems,Numer. Math. 7, 338-352. · Zbl 0142.11504 · doi:10.1007/BF01436528
[2] Brandt, A., Ron, D., and Amit, D. J. (1986). Multilevel approaches to discrete-state and stochastic problems, in Hackbush, W., and Trottenburg, V. (eds.),Multigrid Methods II, Springer-Verlag, Cologne, pp. 66-99. · Zbl 0605.65002
[3] Cornwell, L. W., Pegis, R. J., Rigler, A. K., and Vogl, T. P. (1973). Grey’s method of nonlinear optimization,J. Opt. Soc. Am. 65(3).
[4] Filip, F. G., Donciulescu, D. A., Muratcea, M., et al. (1983). Industrial applications of hierarchical optimization methods. In Straszak, A. (ed.),Large Scale Systems Theory and Applications, 1983 Proc. of the IFAC/IFORS symposium, Warsaw, Poland. · Zbl 0556.90030
[5] Fletcher, R. (1972). Minimizing general functions subject to linear constraints, in Lootsma, F. A. (ed.),Numerical Methods for Nonlinear Optimization, Academic Press, New York. · Zbl 0268.90061
[6] Golub, G. H. (1969). Matrix decompositions and statistical calculations. In Milton and Nelder (eds.),Statistical Computation, Academic Press, New York. · Zbl 0211.45701
[7] Grey, D. S. (1963). Aberration theories for semiautomatic lens design by electronic computers,J. Opt. Soc. Am. 53(6).
[8] Grey, D. S. (1966). Boundary conditions in optimization problems, in Lavi and Vogl (eds.),Recent Advances in Optimization Techniques, J. Wiley, New York. · Zbl 0204.19602
[9] Papageorgio, M., and Schmidt, G. (1980). On the hierarchical solution of nonlinear optimal control problems,Large Scale Syst. 1, 265-271.
[10] Roberts, P. D., Ellis, J. E., Li, C. W., etal. (1983). Algorithms for hierarchical steady state optimization of industrial processes, in Straszak, A. (ed.),Large Scale Systems Theory and Applications, 1983 Proc. of the IFAC/IFORS symposium, Warsaw, Poland.
[11] Sultan, M. A., Hassan, M. F., and Calvet, J. L. (1988). Parameter estimation in large-scale systems using sequential decomposition,Int. J. Syst. Sci. 19(3), 487-96. · Zbl 0639.93056 · doi:10.1080/00207728808967620
[12] Tarvainan, K. (1983). Nonfeasible hierarchical multicriteria methods, In Straszak, A. (ed.),Large Scale Systems Theory and Applications, 1983 Proc. of the IFAC/IFORS symposium, Warsaw, Poland.
[13] Waltz, F. M. (1967). An engineering approach: Hierarchical optimization criteria,IEEE Trans. Automatic Control AC-12, 179-180. · doi:10.1109/TAC.1967.1098537
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.