×

zbMATH — the first resource for mathematics

Adaptive tracking control of leader-following linear multi-agent systems with external disturbances. (English) Zbl 1346.93217
Summary: In this paper, the consensus problem for leader-following linear multi-agent systems with external disturbances is investigated. Brownian motions are used to describe exogenous disturbances. A distributed tracking controller based on Riccati inequalities with an adaptive law for adjusting coupling weights between neighbouring agents is designed for leader-following multi-agent systems under fixed and switching topologies. In traditional distributed static controllers, the coupling weights depend on the communication graph. However, coupling weights associated with the feedback gain matrix in our method are updated by state errors between neighbouring agents. We further present the stability analysis of leader-following multi-agent systems with stochastic disturbances under switching topology. Most traditional literature requires the graph to be connected all the time, while the communication graph is only assumed to be jointly connected in this paper. The design technique is based on Riccati inequalities and algebraic graph theory. Finally, simulations are given to show the validity of our method.

MSC:
93C40 Adaptive control/observation systems
93A14 Decentralized systems
93C05 Linear systems in control theory
68T42 Agent technology and artificial intelligence
93C73 Perturbations in control/observation systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1109/TAC.2013.2270873 · Zbl 1360.93020
[2] DOI: 10.1080/00207721.2014.966281 · Zbl 1337.93007
[3] DOI: 10.1016/j.automatica.2013.08.006 · Zbl 1315.93035
[4] DOI: 10.1016/j.sysconle.2009.02.002 · Zbl 1161.93002
[5] DOI: 10.1109/TAC.2005.858670 · Zbl 1365.94482
[6] DOI: 10.1016/j.automatica.2007.07.004 · Zbl 1283.93019
[7] DOI: 10.1016/j.automatica.2010.05.020 · Zbl 1204.93011
[8] DOI: 10.1137/06067359X · Zbl 1182.93108
[9] DOI: 10.1109/TAC.2003.812781 · Zbl 1364.93514
[10] DOI: 10.1016/j.ins.2014.07.024 · Zbl 1355.68271
[11] DOI: 10.1016/j.ins.2013.09.039 · Zbl 1332.34094
[12] DOI: 10.1109/TCSI.2009.2023937
[13] DOI: 10.1109/TAC.2012.2235715 · Zbl 1369.93032
[14] DOI: 10.1109/TAC.2008.919548 · Zbl 1367.93074
[15] DOI: 10.1016/j.automatica.2015.04.005 · Zbl 1330.93113
[16] DOI: 10.1080/00207179.2014.944872 · Zbl 1328.93025
[17] DOI: 10.1137/100816870 · Zbl 1266.93137
[18] DOI: 10.1109/TAC.2004.841888 · Zbl 1365.93268
[19] DOI: 10.1016/j.sysconle.2010.01.006 · Zbl 1223.93006
[20] DOI: 10.1109/TAC.2004.834113 · Zbl 1365.93301
[21] DOI: 10.1137/060674909 · Zbl 1182.93025
[22] DOI: 10.1080/00207721.2013.798442 · Zbl 1312.93012
[23] DOI: 10.1016/j.automatica.2009.07.006 · Zbl 1183.93054
[24] DOI: 10.1016/j.automatica.2009.07.022 · Zbl 1180.93005
[25] DOI: 10.1109/TSMCB.2011.2179981
[26] DOI: 10.1109/TAC.2011.2176391 · Zbl 1369.93387
[27] DOI: 10.1109/TAC.2008.930184 · Zbl 1367.93411
[28] DOI: 10.1109/TAC.2009.2029296 · Zbl 1367.93542
[29] DOI: 10.1080/00207721.2012.683831 · Zbl 1307.93039
[30] DOI: 10.1080/00207721.2013.837544 · Zbl 1332.90064
[31] DOI: 10.1109/TAC.2014.2359306 · Zbl 1360.93753
[32] DOI: 10.1080/00207721.2013.769647 · Zbl 1317.93092
[33] DOI: 10.1109/TAC.2011.2139510 · Zbl 1368.93265
[34] DOI: 10.1109/TCSI.2013.2265978
[35] DOI: 10.1080/00207179.2013.873952 · Zbl 1291.93020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.