zbMATH — the first resource for mathematics

Interval consensus problem of multi-agent systems in accordance with switching protocol. (English) Zbl 1333.93019
Summary: In this paper, we discuss the interval consensus problem of multi-agent systems by providing a special Laplacian of directed graphs. As one of the most important issues in the coordination control of multi-agent systems, the consensus problem requires that the output of several spatially distributed agents reach a common value that depends on the states of all agents. For the given consensus protocol and initial states, a fixed consensus value is obtained. The resulting consensus value, however, may not be ideal or meet the quality that we require from the multi-agent system. In this paper, by introducing two state-dependent switching parameters into the consensus protocol, the system given by the proposed protocol can globally asymptotically converge to a designated point on a special closed and bounded interval. In other words, the system given by the proposed protocol can globally asymptotically reach interval consensus and then the system can also achieve a generalised interval average consensus if the directed graph is balanced. Simulations are presented to demonstrate the effectiveness of our theoretical results.
93A14 Decentralized systems
68T42 Agent technology and artificial intelligence
94C15 Applications of graph theory to circuits and networks
Full Text: DOI
[1] DOI: 10.1109/TAC.2004.834433 · Zbl 1365.90056
[2] DOI: 10.1007/978-1-4613-0163-9
[3] DOI: 10.1016/j.automatica.2006.02.013 · Zbl 1117.93300
[4] DOI: 10.1109/TAC.2003.812781 · Zbl 1364.93514
[5] DOI: 10.1080/00207721.2012.757384 · Zbl 1290.93006
[6] DOI: 10.1016/S0005-1098(02)00025-0 · Zbl 1032.93553
[7] Luenberger D.G, Introduction to dynamic systems: Theory, models and applications (1979) · Zbl 0458.93001
[8] Lynch N.A, Distributed algorithms (1997)
[9] DOI: 10.1515/9781400835355
[10] DOI: 10.1109/TAC.2004.841888 · Zbl 1365.93268
[11] DOI: 10.1016/j.physa.2004.12.054
[12] DOI: 10.1109/TAC.2011.2161052 · Zbl 1368.93010
[13] DOI: 10.1109/TAC.2010.2084150 · Zbl 1368.93224
[14] DOI: 10.1109/TAC.2005.864190 · Zbl 1366.93391
[15] DOI: 10.1109/JPROC.2006.887293 · Zbl 1376.68138
[16] DOI: 10.1109/TAC.2004.834113 · Zbl 1365.93301
[17] DOI: 10.1016/j.automatica.2007.01.004 · Zbl 1130.93349
[18] DOI: 10.1049/iet-cta:20050401
[19] DOI: 10.1109/TAC.2005.846556 · Zbl 1365.93302
[20] DOI: 10.1007/978-1-84800-015-5
[21] DOI: 10.1109/MCS.2007.338264
[22] DOI: 10.1080/00207721.2013.798442 · Zbl 1312.93012
[23] DOI: 10.1109/TAC.2008.2010897 · Zbl 1367.37059
[24] DOI: 10.1109/TAC.2009.2017963 · Zbl 1367.93574
[25] DOI: 10.1016/j.sysconle.2007.08.009 · Zbl 1133.68412
[26] DOI: 10.1103/PhysRevLett.75.1226
[27] DOI: 10.1109/TRO.2006.878948
[28] DOI: 10.9746/jcmsi.6.7
[29] DOI: 10.1016/j.automatica.2009.07.012 · Zbl 1180.93006
[30] DOI: 10.1007/s12555-012-0416-3
[31] DOI: 10.1109/TII.2012.2225434
[32] DOI: 10.1109/TIE.2011.2107720
[33] DOI: 10.1002/rnc.1688 · Zbl 1244.93047
[34] DOI: 10.1080/00207721.2013.763303 · Zbl 1317.93025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.