×

zbMATH — the first resource for mathematics

Joining consensus of networked multi-agent systems with nonlinear couplings and weighting constraints. (English) Zbl 1333.93017
Summary: This paper studies the joining consensus of networked multi-agent systems subject to nonlinear couplings and weighted directed graphs via pinning control. A weighted-average consensus protocol is proposed to achieve the collective decision by interacting with the local information of some pinned agents. By proposing a novel joining consensus protocol, average consensus and general consensus strategies are joined to achieve an agreement for the weighting networked system. Furthermore, by calculating a proper consensus gain and using finite control Lyapunov controllers, an efficient joining consensus protocol is presented to improve the consensus speed. Sufficient conditions for achieving the consensuses asymptotically are proved. Finally, theoretical results are validated via simulations.

MSC:
93A14 Decentralized systems
68T42 Agent technology and artificial intelligence
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.automatica.2012.08.003 · Zbl 1252.93004
[2] DOI: 10.1137/080726720 · Zbl 1234.93107
[3] DOI: 10.1016/j.automatica.2008.12.027 · Zbl 1162.93305
[4] DOI: 10.1016/j.automatica.2013.01.048 · Zbl 1319.93053
[5] DOI: 10.1016/j.automatica.2013.04.021 · Zbl 1364.93014
[6] DOI: 10.1016/j.sysconle.2005.04.005 · Zbl 1129.93497
[7] DOI: 10.1016/j.automatica.2008.10.023 · Zbl 1166.93022
[8] DOI: 10.1016/j.sysconle.2011.05.009 · Zbl 1226.93012
[9] DOI: 10.1016/j.automatica.2007.01.002 · Zbl 1123.93090
[10] DOI: 10.1016/j.automatica.2012.11.041 · Zbl 1259.93007
[11] DOI: 10.1080/00207721.2013.837541 · Zbl 1332.93345
[12] DOI: 10.1016/j.automatica.2009.04.017 · Zbl 1185.93006
[13] DOI: 10.1109/TCSI.2004.835655 · Zbl 1374.94915
[14] DOI: 10.1016/j.sysconle.2011.04.008 · Zbl 1222.93013
[15] DOI: 10.1109/TAC.2012.2235715 · Zbl 1369.93032
[16] DOI: 10.1016/S0005-1098(98)00019-3 · Zbl 0934.93034
[17] DOI: 10.1109/TAC.2004.834113 · Zbl 1365.93301
[18] DOI: 10.1016/j.automatica.2012.11.021 · Zbl 1259.93012
[19] DOI: 10.1109/TAC.2006.880806 · Zbl 1366.93267
[20] DOI: 10.1080/00207721.2012.659691 · Zbl 1278.93012
[21] DOI: 10.1080/00207721.2013.798442 · Zbl 1312.93012
[22] DOI: 10.1016/j.sysconle.2010.06.016 · Zbl 1213.37131
[23] DOI: 10.1137/0321028 · Zbl 0513.93047
[24] DOI: 10.1016/j.automatica.2009.05.026 · Zbl 1179.93102
[25] DOI: 10.1016/j.automatica.2012.03.029 · Zbl 1258.93015
[26] DOI: 10.1109/TAC.2007.895948 · Zbl 1366.93414
[27] DOI: 10.1109/MCAS.2010.937887
[28] DOI: 10.1016/S0378-4371(02)00772-0 · Zbl 0995.90008
[29] DOI: 10.1038/30918 · Zbl 1368.05139
[30] DOI: 10.1049/iet-cta.2011.0156
[31] DOI: 10.1080/00207179.2012.719637 · Zbl 1278.93017
[32] DOI: 10.1016/j.automatica.2011.01.081 · Zbl 1233.93011
[33] DOI: 10.1016/j.automatica.2013.07.024 · Zbl 1358.93025
[34] DOI: 10.1109/TAC.2011.2164017 · Zbl 1368.93014
[35] DOI: 10.1016/j.automatica.2008.07.016 · Zbl 1158.93308
[36] DOI: 10.1016/j.automatica.2013.04.037 · Zbl 1364.93446
[37] DOI: 10.1109/TCSI.2011.2123450
[38] DOI: 10.1016/j.automatica.2009.01.021 · Zbl 1166.93382
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.