×

zbMATH — the first resource for mathematics

\(\mathcal{H}_{\infty}\)-synchronizer for chaotic communication systems. (English) Zbl 1151.94306

MSC:
94A05 Communication theory
93B36 \(H^\infty\)-control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1142/S0218127406015970 · Zbl 1192.94088
[2] DOI: 10.1109/TCSI.2006.885979 · Zbl 1374.94774
[3] DOI: 10.1109/82.246163
[4] DOI: 10.1109/81.633884
[5] DOI: 10.1109/9.29425 · Zbl 0698.93031
[6] Doyle J. C., Feedback Control Theory (1992)
[7] DOI: 10.1109/81.633879
[8] Fradkov A. L., Int. J. Bifurcation and Chaos 10 pp 2807–
[9] DOI: 10.1109/81.788815 · Zbl 0963.94022
[10] DOI: 10.1109/TCSI.2002.808207 · Zbl 1368.94100
[11] DOI: 10.1109/81.788817 · Zbl 0963.94003
[12] DOI: 10.1080/002071798222244 · Zbl 0925.93846
[13] DOI: 10.1142/S0218127404011971 · Zbl 1079.94562
[14] DOI: 10.1142/S0218127497001059 · Zbl 0967.93508
[15] DOI: 10.1109/81.633878
[16] DOI: 10.1063/1.1633492
[17] DOI: 10.1142/S0218127497000443 · Zbl 0925.93374
[18] DOI: 10.1109/81.572346 · Zbl 0884.94021
[19] Yang T., Int. J. Comput. Cogn. 2 pp 81–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.