×

Amplitude expansions for instabilities in populations of globally-coupled oscillators. (English) Zbl 0831.34040

Summary: We analyze the nonlinear dynamics near the incoherent state in a mean- field model of coupled oscillators. The population is described by a Fokker-Planck equation for the distribution of phases, and we apply center-manifold reduction to obtain the amplitude equations for steady- state and Hopf bifurcation from the equilibrium state with a uniform phase distribution. When the population is described by a native frequency distribution that is reflection-symmetric about zero, the problem has circular symmetry. In the limit of zero extrinsic noise, although the critical eigenvalues are embedded in the continuous spectrum, the nonlinear coefficients in the amplitude equation remain finite, in contrast to the singular behavior found in similar instabilities described by the Vlasov-Poisson equation. For a bimodal reflection-symmetric distribution, both types of bifurcation are possible and they coincide at a codimension-two Takens-Bogdanov point. The steady- state bifurcation may be supercritical or subcritical and produces a time-independent synchronized state. The Hopf bifurcation produces both supercritical stable standing waves and supercritical unstable traveling waves. Previous work on the Hopf bifurcation in a bimodal population by Bonilla, Neu, and Spigler and by Okuda and Kuramoto predicted stable traveling waves and stable standing waves, respectively. A comparison to these previous calculations shows that the prediction of stable traveling waves results from a failure to include all unstable modes.

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34C30 Manifolds of solutions of ODE (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] A. Winfree, Biological rhythms and the behavior of populations of coupled oscillators,J. Theor. Biol. 16:15–42 (1967). · doi:10.1016/0022-5193(67)90051-3
[2] Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence (Springer-Verlag, New York, 1984). · Zbl 0558.76051
[3] H. Sakaguchi, Cooperative phenomena in coupled oscillator system under external fields.Prog. Theor. Phys. 79:39–46 (1988). · doi:10.1143/PTP.79.39
[4] Y. Kuramoto, Cooperative dynamics of oscillator community,Prog. Theor. Phys. Suppl. 79:223–240 (1984).
[5] Y. Kuramoto and I. Nishikawa, Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator commutities,J. Stat. Phys. 49:569–605 (1987). · Zbl 0965.82500 · doi:10.1007/BF01009349
[6] H. Daido, Intrinsic fluctuations and a phase transition in a class of large populations of interacting oscillators.J. Stat. Phys. 60:753–800 (1990). · Zbl 1086.82559 · doi:10.1007/BF01025993
[7] S. Strogatz and R. Mirollo, Stability of incoherence in a population of coupled oscillators,J. Stat. Phys. 63:613–635 (1991). · doi:10.1007/BF01029202
[8] S. Strogatz, R. Mirollo, and P. C. Matthews, Coupled nonlinear oscillators below the synchronization threshold: Relaxation by generalized Landau damping.Phys. Rev. Lett. 68:2730–2733 (1992). · Zbl 0969.92501 · doi:10.1103/PhysRevLett.68.2730
[9] K. Okuda and Y. Kuramoto, Mutual entrainment between populations of coupled oscillators,Prog. Theor. Phys. 86:1159–1176 (1991). · doi:10.1143/PTP.86.1159
[10] H. Daido, Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators,Prog. Theor. Phys. 88:1213–1218 (1992). · doi:10.1143/PTP.88.1213
[11] L. L. Bonilla, J. C. Neu, and R. Spigler, Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators,J. Stat. Phys. 67:313–330 (1992). · Zbl 0925.82176 · doi:10.1007/BF01049037
[12] G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies,J. Math. Biol. 22:1–9 (1985). · Zbl 0558.92001 · doi:10.1007/BF00276542
[13] J. L. van Hemmen and W. F. Wreszinski, Lyapunov function for the Kuramoto model of nonlinearly coupled oscillators,J. Stat. Phys. 72:145–166 (1993). · Zbl 1097.82530 · doi:10.1007/BF01048044
[14] E. Knobloch, Bifurcations in rotating systems, inTheory of Solar and Planetary Dynamos: Introductory Lectures, M.R.E. Proctor and A.D. Gilbert, eds. (Cambridge University Press, Cambridge, 1992).
[15] J. D. Crawford and P. D. Hislop, Application of the method of spectral deformation to the Vlasov-Poisson system,Ann. Phys. (N.Y.)189:265–317 (1989). · Zbl 0703.35172 · doi:10.1016/0003-4916(89)90166-8
[16] J. D. Crawford, Amplitude equations on unstable manifolds: Singular behavior from neutral modes, inModern Mathematical Methods in Transport Theory, W. Greenberg and J. Polewczak, eds. (Birkhauser, Basel, 1991), pp. 97–108. · Zbl 0732.34044
[17] M. Golubitsky, I. Stewart, and D. G. Schaeffer,Singularities and Groups in Bifurcation Theory, Vol. II (Springer-Verlag, New York, 1988). · Zbl 0691.58003
[18] J. D. Crawford and E. Knobloch, Symmetry and symmetry-breaking bifurcations in fluid dynamics,Annu. Rev. Fluid Mech. 23:341–387 (1991). · Zbl 0717.76007 · doi:10.1146/annurev.fl.23.010191.002013
[19] M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. IV (Academic Press, New York, 1978). · Zbl 0401.47001
[20] J. D. Crawford, Introduction to bifurcation theory,Rev. Mod. Phys. 63:991–1037 (1991). · doi:10.1103/RevModPhys.63.991
[21] J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, New York, 1986). · Zbl 0515.34001
[22] A. Vanderbauwhede and G. Iooss, Centre manifold theory in infinite dimensions, inDynamics Reported, Vol. 1 (Springer-Verlag, New York, 1992), pp. 125–163. · Zbl 0751.58025
[23] D. Ruelle, Bifurcations in the presence of a symmetry group,Arch. Rat. Mech. Anal. 51:136 (1973). · Zbl 0259.58009 · doi:10.1007/BF00247751
[24] A. K. Bajaj, Bifurcating periodic solutions in rotationally symmetric systems.SIAM J. Appl. Math. 42:1978–1990 (1982). · Zbl 0506.34041 · doi:10.1137/0142075
[25] S. A. van Gils and J. Mallet-Paret, Hopf bifurcation and symmetry: Travelling and standing waves on the circle,Proc. R. Soc. Edinburgh 104A:279–307 (1986). · Zbl 0629.35012
[26] W. Nagata, Symmetric Hopf bifurcation and magnetoconvection,Contemp. Math. 56:237–265 (1986). · Zbl 0604.58038
[27] P. Peplowski and H. Haken, Effects of detuning on Hopf bifurcation at double eigenvalues in laser systems.Phys. Lett. A 120:138–140 (1987). · doi:10.1016/0375-9601(87)90715-8
[28] G. Dangelmayr and E. Knobloch, The Takens-Bogdanov bifurcation withO(2) symmetry,Phil. Trans. R. Soc. Lond. A 322:243–279 (1987). · Zbl 0635.58032 · doi:10.1098/rsta.1987.0050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.