×

Modeling open boundaries in dissipative MHD simulation. (English) Zbl 1426.76403

Summary: The truncation of large physical domains to concentrate computational resources is necessary or desirable in simulating many natural and man-made plasma phenomena. Three open boundary condition (BC) methods for such domain truncation of dissipative magnetohydrodynamics (MHD) problems are described and compared here. A novel technique, lacuna-based open boundary conditions (LOBC), is presented for applying open BC to dissipative MHD and other hyperbolic and mixed hyperbolic-parabolic systems of partial differential equations. LOBC, based on manipulating Calderon-type near-boundary sources, essentially damp hyperbolic effects in an exterior region attached to the simulation domain and apply BC appropriate for the remaining parabolic effects (if present) at the exterior region boundary. Another technique, approximate Riemann BC (ARBC), is adapted from finite volume and discontinuous Galerkin methods. In ARBC, the value of incoming flux is specified using a local, characteristic-based method. A third commonly-used open BC, zero-normal derivative BC (ZND BC), is presented for comparison. These open BC are tested in several gas dynamics and dissipative MHD problems. LOBC are found to give stable, low-reflection solutions even in the presence of strong parabolic behavior, while ARBC are stable only when hyperbolic behavior is dominant. Pros and cons of the techniques are discussed and put into context within the body of open BC research to date.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics

Software:

SEL/HiFi; PETSc; LAPACK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Charney, J. G.; Fjörtoft, R.; Von Neumann, J., Numerical integration of the barotropic vorticity equation, Tellus, 2, 237-254 (1950)
[2] Henderson, R. D., Adaptive spectral element methods for turbulence and transition, (Barth, H. D.T. J., High-Order Methods for Computational Physics (1999), Springer-Verlag), 225-324 · Zbl 0937.76055
[3] Hirsch, C., Numerical Computation of Internal and External Flows (1988), Wiley
[4] Morı́ñigo, J. A.; Salvá, J. J., Robust non-reflecting boundary conditions for the simulation of rocket nozzle flow, Aero. Sci. Tech., 14, 429-441 (2010)
[5] Durran, D. R., Numerical Methods for Wave Equations in Geophysical Fluid Dynamics (1999), Springer-Verlag
[6] A.V. Ilin, et al., Simulations of plasma detachment in VASIMR, AIAA-2002-0346, in: Proceedings of the 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, January 2002.; A.V. Ilin, et al., Simulations of plasma detachment in VASIMR, AIAA-2002-0346, in: Proceedings of the 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, January 2002.
[7] B.L. England, P.G. Mikellides, Numerical simulation of a MW-class self field magnetoplasmadynamic thruster using the MACH 2 code, IEPC-2005-206, in: Proceedings of the 29th International Electric Propulsion Conference, Princeton, November 2005.; B.L. England, P.G. Mikellides, Numerical simulation of a MW-class self field magnetoplasmadynamic thruster using the MACH 2 code, IEPC-2005-206, in: Proceedings of the 29th International Electric Propulsion Conference, Princeton, November 2005.
[8] Landi, S.; Velli, M., Alfvén waves and shock wave formation at an \(X\)-point magnetic field configuration, Astrophys. J., 624, 392-401 (2005)
[9] Shumlak, U., flow shear and stability measurements in the \(Z\)-pinch, Nuclear Fus, 49, 075039 (2009)
[10] Kanki, T., Magnetohydrodynamic simulation of dynamical behavior of a field-reversed configuration during magnetic mirror reflection, Phys. Plasmas, 10, 3635-3643 (2003)
[11] Glasser, A. H.; Tang, X. Z., The SEL macroscopic modeling code, Comp. Phys. Commun., 164, 237-243 (2004) · Zbl 1196.76006
[12] V.S. Lukin, Computational study of the internal kink mode evolution and associated magnetic reconnection phenomena, Ph.D. thesis, Princeton University, 2008.; V.S. Lukin, Computational study of the internal kink mode evolution and associated magnetic reconnection phenomena, Ph.D. thesis, Princeton University, 2008.
[13] Ryabenkii, V. S.; Tsynkov, S. V.; Turchaninov, V. I., Global discrete artificial boundary conditions for time-dependent wave propagation, J. Comput. Phys., 174, 712-758 (2001) · Zbl 0991.65100
[14] Tsynkov, S. V., Numerical solution of problems on unbounded domains: a review, Appl. Numer. Math., 27 (1998) · Zbl 0939.76077
[15] Givoli, D., Non-reflecting boundary conditions: a review, J. Comput. Phys., 94, 1-29 (1991) · Zbl 0731.65109
[16] Givoli, D., High-order local non-reflecting boundary conditions: a review, Wave Motion, 39, 319-326 (2004) · Zbl 1163.74356
[17] Colonius, T., Modeling artificial boundary conditions for compressible flow, Annu. Rev. Fluid Mech., 36, 315-345 (2004) · Zbl 1076.76040
[18] Hu, F. Q., Absorbing boundary conditions, Int. J. Comput. Fluid Dyn., 18, 513-522 (2004) · Zbl 1065.76593
[19] Thompson, K. W., Time-dependent boundary conditions for hyperbolic systems, J. Comput. Phys., 68, 1-24 (1987) · Zbl 0619.76089
[20] Thompson, K. W., Time-dependent boundary conditions for hyperbolic systems. II, J. Comput. Phys., 89, 439-461 (1990) · Zbl 0701.76070
[21] LeVeque, R., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press · Zbl 1010.65040
[22] U. Shumlak, B. Udrea, An approximate Riemann solver for MHD computations on parallel architectures, AIAA 2001-2591.; U. Shumlak, B. Udrea, An approximate Riemann solver for MHD computations on parallel architectures, AIAA 2001-2591.
[23] B. Udrea, An advanced implicit solver for MHD, Ph.D. thesis, University of Washington, 1999.; B. Udrea, An advanced implicit solver for MHD, Ph.D. thesis, University of Washington, 1999.
[24] Cockburn, B.; Karniadakis, G. E.; Shu, C. W., The development of discontinuous Galerkin methods, (Cockburn, B.; Karniadakis, G. E.; Shu, C. W., Discontinuous Galerkin Methods: Theory. Discontinuous Galerkin Methods: Theory, Computation and Applications (2000), Springer-Verlag), 3-50 · Zbl 0989.76045
[25] Gustafsson, B.; Kreiss, H.-O.; Oliger, J., Time Dependent Problems and Difference Methods (1995), Wiley: Wiley New York
[26] Strikwerda, J. C., Initial boundary value problems for incompletely parabolic systems, Commun. Pure Appl. Math., 30, 797-822 (1977) · Zbl 0351.35051
[27] Hesthaven, J. S.; Gottlieb, D., A stable penalty method for the compressible Navier-Stokes equations: I. Open boundary conditions, J. Sci. Comput., 17, 579-612 (1996) · Zbl 0853.76061
[28] Nordström, J.; Svärd, M., Well-posed boundary conditions for the Navier-Stokes equations, J. Numer. Anal., 43, 1231-1255 (2005) · Zbl 1319.35163
[29] Hesthaven, J. S., Spectral penalty methods, Appl. Numer. Math., 33 (2000) · Zbl 0964.65114
[30] Calderon, A. P., Boundary-Value Problems for Elliptic Equations, (Soviet-American Conference on Partial Differential Equations at Novosibirsk (1963), Fizmatgiz: Fizmatgiz Moscow), 303-304
[31] Qasimov, H.; Tsynkov, S., Lacunae based stabilization of PMLs, J. Comput. Phys., 227, 7322-7345 (2008) · Zbl 1145.65082
[32] Dedner, A., Transparent boundary conditions for MHD simulations in stratified atmospheres, J. Comput. Phys., 171, 448-478 (2001) · Zbl 0997.76053
[33] Faganello, M., Being on time in magnetic reconnection, New J. Phys., 11, 1-25 (2009)
[34] Forbes, T. G.; Priest, E. R., A comparison of analytical and numerical models for steadily driven magnetic reconnection, Rev. Geophys., 25, 1583-1607 (1987)
[35] K.G. Powell et al., An upwind scheme for magnetohydrodynamics, in: K.W. Morton, M.J. Baines (Eds.), Numerical Methods for Fluid Dynamics V, 1995, pp. 163-180.; K.G. Powell et al., An upwind scheme for magnetohydrodynamics, in: K.W. Morton, M.J. Baines (Eds.), Numerical Methods for Fluid Dynamics V, 1995, pp. 163-180. · Zbl 0900.76344
[36] Portable, Extensible Toolkit for Scientific Computation (PETSc), <www.mcs.anl.gov/petsc/petsc-as/>; Portable, Extensible Toolkit for Scientific Computation (PETSc), <www.mcs.anl.gov/petsc/petsc-as/>
[37] LAPACK (Linear Algebra PACKage), <www.netlib.org/lapack/>; LAPACK (Linear Algebra PACKage), <www.netlib.org/lapack/>
[38] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[39] Courant, R.; Hilbert, D., Methods of Mathematical Physics, vol. II (1962), Wiley: Wiley New York · Zbl 0729.00007
[40] Tsynkov, S. V., Weak lacunae of electromagnetic waves in dilute plasma, SIAM J. Appl. Math., 67, 1548-1581 (2007) · Zbl 1206.78026
[41] Tuszewski, M. J., Field reversed configurations, Nuclear Fus., 28, 2033-2092 (1988)
[42] J. Slough, Personal communication, (2010).; J. Slough, Personal communication, (2010).
[43] G.J. Marklin, Personal communication, (2008).; G.J. Marklin, Personal communication, (2008).
[44] Jahn, R. G., Physics of Electric Propulsion (1968), McGraw-Hill
[45] E. Choueiri, Lorentz force accelerator with an open-ended lithium heat pipe, AIAA-96-2737, in: Proceedings of the 32nd AIAA Joint Propulsion Conference, Lake Buena Vista, FL, July 1996.; E. Choueiri, Lorentz force accelerator with an open-ended lithium heat pipe, AIAA-96-2737, in: Proceedings of the 32nd AIAA Joint Propulsion Conference, Lake Buena Vista, FL, July 1996.
[46] Lukin, V. S., Numerical modeling of magnetohydrodynamic activity in the swarthmore spheromak experiment, Phys. Plasmas, 8, 1600-1606 (2001)
[47] Jarboe, T. R., Review of spheromak research, Plasma Phys. Control Fusion, 36, 945-990 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.