×

The reproduction number of COVID-19 and its correlation with public health interventions. (English) Zbl 1469.92116

Summary: Throughout the past six months, no number has dominated the public media more persistently than the reproduction number of COVID-19. This powerful but simple concept is widely used by the public media, scientists, and political decision makers to explain and justify political strategies to control the COVID-19 pandemic. Here we explore the effectiveness of political interventions using the reproduction number of COVID-19 across Europe. We propose a dynamic SEIR epidemiology model with a time-varying reproduction number, which we identify using machine learning. During the early outbreak, the basic reproduction number was \(4.22 \pm 1.69\), with maximum values of 6.33 and 5.88 in Germany and the Netherlands. By May 10, 2020, it dropped to \(0.67 \pm 0.18\), with minimum values of 0.37 and 0.28 in Hungary and Slovakia. We found a strong correlation between passenger air travel, driving, walking, and transit mobility and the effective reproduction number with a time delay of \(17.24 \pm 2.00\) days. Our new dynamic SEIR model provides the flexibility to simulate various outbreak control and exit strategies to inform political decision making and identify safe solutions in the benefit of global health.

MSC:

92D30 Epidemiology

Software:

PyMC; NUTS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosi D, BenAmar M, Cyron CJ, DeSimone A, Goriely A, Humphrey JD, Kuhl E (2019) Growth and remodelling of living tissues: perspectives, challenges, and opportunities. J R S Interface 16:20190233. 10.1098/rsif.2019.0233
[2] Alber, M.; Buganza, TA; Cannon, W.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, WW; Perdikaris, P.; Petzold, L.; Kuhl, E., Integrating machine learning and multiscale modeling: perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences, NPJ Dig Med, 2, 115 (2019) · doi:10.1038/s41746-019-0193-y
[3] Anderson, RM; May, RM, Directly transmitted infectious diseases: control by vaccination, Science, 215, 1053-1060 (1982) · Zbl 1225.37099 · doi:10.1126/science.7063839
[4] Apple Mobility Trends. https://www.apple.com/covid19/mobility. Accessed on 25 June 2020
[5] Arenas A, Cota W, Gomez-Gardenes J, Gomez S, Granell C, Matamalas JT, Soriano-Panos D, Steinegger B (2020) Derivation of the effective reproduction number R for COVID-19 in relation to mobility restrictions and confinement. medRxiv 10.1101/2020.04.06.20054320.
[6] Aron, JL; Schwartz, IB, Seasonality and period-doubling bifurcation in an epidemic model, J Theor Bio, 110, 665-679 (1984) · doi:10.1016/S0022-5193(84)80150-2
[7] Biggerstaff, M.; Cauchemez, S.; Reed, C.; Gambhir, M.; Finelli, L., Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature, BMC Infectious Disease, 14, 480 (2014) · doi:10.1186/1471-2334-14-480
[8] Chinazzi, M.; Davis, JT; Ajelli, M.; Gioanni, C.; Vespignani, A., The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak, Science (2020) · doi:10.1126/science.aba9757
[9] Chu, DK; Akl, EA; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, HJ, Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis, Lancet, 395, 1973-1987 (2020) · doi:10.1016/S0140-6736(20)31142-9
[10] Cobey, S., Modeling infectious disease dynamics, Science (2020) · doi:10.1126/science.aba5659
[11] J. Dehning, J. Zierenberg, F.P. Spitzner, M. Wibral, J. Pinheiro Neto, M. Wilczek, V. Priesemann, Inferring COVID-19 spreading rates and potential change points for case number forecasts. (2020) arXiv:2004.01105
[12] Delamater, PL; Street, EJ; Leslie, TF; Yang, YT; Jacobsen, KH, Complexity of the basic reproduction number \((R_0)\), Emerg Infect Disease, 25, 1-4 (2019) · doi:10.3201/eid2501.171901
[13] Dietz, K., The estimation of the basic reproduction number for infectious diseases, Stat Meth Med Res, 2, 23-41 (1993) · doi:10.1177/096228029300200103
[14] van den Diessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartment models of disease transmission, Math Biosci, 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[15] European Centre for Disease Prevention and Control. Situation update worldwide. https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases. Accessed on 25 June 2020
[16] European Commission. COVID-19: Temporary restriction on non-essential travel to the EU. Communication from the Commission to the European Parliament, the European Council and the Council. Brussels, March 16, 2020
[17] Erlich, A.; Moulton, DE; Goriely, A., Are homeostatic states stable?, Bull Math Bio, 81, 3219-3244 (2019) · Zbl 1422.92013 · doi:10.1007/s11538-018-0502-7
[18] Eurostat. Your key to European statistics. Air transport of passengers. https://ec.europa.eu/eurostat. Accessed on 25 June 2020
[19] Eurocontrol. Flights 2020. Daily traffic variation. http://eurocontrol.int. Accessed on 25 June 2020
[20] Fang, Y.; Nie, Y.; Penny, M., Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: a data-driven analysis, J Med Virol, 10, 1-15 (2020)
[21] Fauci, AS; Lane, HC; Redfield, RR, Covid-19-Navigating the uncharted, New Engl J Med, 382, 1268-1269 (2020) · doi:10.1056/NEJMe2002387
[22] Fine, PEM, Herd immunity: history, theory, practice, Epidemiol Rev, 15, 265-302 (1993) · doi:10.1093/oxfordjournals.epirev.a036121
[23] Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, HJT; Bhatt, S., Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe, Nature (2020) · doi:10.1038/s41586-020-2405-7
[24] Hellewell, J.; Abbott, S.; Gimma, A.; Bosse, NI; Jarvis, CI; Russell, TW; Munday, JD; Kucharski, AJ; Edmunds, WJ, Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts, Lancet Global Health, 8, e488-496 (2020) · doi:10.1016/S2214-109X(20)30074-7
[25] Hethcote, HW, The mathematics of infectious diseases, SIAM Rev, 42, 599-653 (2000) · Zbl 0993.92033 · doi:10.1137/S0036144500371907
[26] Hoffman, MD; Gelman, A., The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo, J Mach Learn Res, 15, 1593-1623 (2014) · Zbl 1319.60150
[27] Hsu J (2020) Here’s how computer models simulate the future spread of new coronavirus. Scientific American (2020)
[28] Hui, DS; Azhar, EI; Madani, TA; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchogh, TD; Memish, ZA; Drosten, C.; Zumla, A.; Petersen, E., The continuing 2019-nCoV epidemic thread of novel coronaviruses to global health-The latest. Novel coronavirus outbreak in Wuhan, China Int J Infect Dis, 91, 2020, 264-266 (2019)
[29] Kermack, WO; McKendrick, G., Contributions to the mathematical theory of epidemics, part I, Proc R Soc London Ser A, 115, 700-721 (1927) · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[30] Lange, KL; Little, RJA; Taylor, JMG, Robust statistical modeling using the T distribution, J Am Stat Ass, 84, 881-896 (1989)
[31] Lauer, SA; Grantz, KH; Bi, Q.; Jones, FK; Zheng, Q.; Meredith, HR; Azman, AS; Reich, NG; Lessler, J., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Ann Int Med (2020) · doi:10.7326/M20-0504
[32] Li, MY; Muldowney, JS, Global stability for the SEIR model in epidemiology, Math Biosci, 125, 155-164 (1995) · Zbl 0821.92022 · doi:10.1016/0025-5564(95)92756-5
[33] Li, Q.; Guan, X.; Wu, P.; Wang, X.; Feng, Z., Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, New Eng J Med (2020) · doi:10.1056/NEJMoa2001316
[34] Linka K, Peirlinck M, Sahli Costabal F, Kuhl E. Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions. Comput Methods Biomech Biomed Eng; in press. 10.1080/10255842.2020.1759560
[35] Linka K, Goriely A, Kuhl Global E (2020) local mobility as a barometer for COVID-19 dynamics medRxiv. 10.1101/2020.06.13.20130658
[36] Liu, Y.; Gayle, AA; Wilder-Smith, A.; Rocklöv, J., The reproductive number of COVID-19 is higher compared to SARS coronavirus, J Travel Med (2020) · doi:10.1093/jtm/taaa021
[37] Maier BF, Brockmann D (2020) Effective containment explains sub-exponential growth in confirmed cases of recent COVID-19 outbreak in mainland China. medRxiv 10.1101/2020.02.18.20024414.
[38] Mason, MB; Habibi, R.; Tony, YY, Travel restrictions violate international law, Science, 367, 1436 (2020)
[39] Pang, GCY; Alber, M.; Buganza, TA; Cannon, W.; De, S.; Dura-Bernal, S.; Garikipati, K.; Karniadakis, G.; Lytton, WW; Perdikaris, P.; Petzold, L.; Kuhl, E., Multiscale modeling meets machine learning: What can we learn?, Arch Comput Methods Eng (2020) · doi:10.1007/s11831-020-09405-5
[40] Park SW, Bolker BM, Champredon D, Earn DJD, Li M, Weitz JS, Grenfell BT, Dushoff J (2020) Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: framework and applications to the novel coronavirus outbreak. medRxiv 10.1101/2020.01.30.20019877.
[41] Peirlinck M, Sahli Costabal F, Sack KL, Choy JS, Kassab GS, Guccione JM, De Beule M, Segers P, Kuhl E (2019) Using machine learning to characterize heart failure across the scales. Biomech. Model. Mechanobio. 18 1987-2001. 10.1007/s10237-019-01190-w
[42] Peirlinck, M.; Linka, K.; Sahli Costabal, F.; Kuhl, E., Outbreak dynamics of COVID-19 in China and the USA, Biomech Model Mechanobio (2020) · doi:10.1007/s10237-020-01332-5
[43] Peirlinck M, Linka K, Sahli Costabal F, Bendavid E, Bhattacharya J, Ioannidis JPA, Kuhl E (2020) Visualizing the invisible: The effect of asymptomatic transmission on the outbreak dynamics of COVID-19. 10.1101/2020.05.23.20111419
[44] Prem K, Liu Y, Kucharski AJ, Eggo RM, Davies N. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modeling study. Lancet Public Health. 10.1016/S2468-2667 (20)30073-6
[45] Sahli CF, Matsuno K, Yao J, Perdikaris P, Kuhl E (2019) Machine learning in drug development: characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification. Comput. Methods Appl. Mech. Eng. 348:313-333. 10.1016/j.cma.2019.01.033 · Zbl 1440.62371
[46] Salvatier, J.; Wiecki, TV; Fonnesbeck, C., Probabilistic programming in Python using PyMC3, Peer J Comput Sci, 2, e55 (2016) · doi:10.7717/peerj-cs.55
[47] Sanche, S.; Lin, YT; Xu, C.; Romero-Severson, E.; Hengartner, N.; Ke, R., High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2, Emerg Infect Disease (2020) · doi:10.3201/eid2607.200282
[48] Sjödin, H.; Wilder-Smith, A.; Osman, S.; Farooq, Z.; Rocklöv, J., Only strict quarantine measures can curb the coronavirus disease (COVID-19) outbreak in Italy, 2020, Euro Surveill, 25, 2000280 (2020) · doi:10.2807/1560-7917.ES.2020.25.13.2000280
[49] Tang, B.; Xia, F.; Bragazzi, NL; McCarthy, Z.; Wang, X.; He, S.; Sun, X.; Tang, S.; Xiao, Y.; Wu, J., Lessons drawn from China and South Korea for managing COVID-19 epidemic: insights from a comparative modeling study, Bull World Health Organ (2020) · doi:10.2471/blt.20.257238
[50] Viceconte, G.; Petrosillo, N., COVID-19 R0: magic number or conundrum?, Infect Dis Rep, 12, 8516 (2020) · doi:10.4081/idr.2020.8516
[51] World Health Organization. WHO Virtual press conference on COVID-19. https://www.who.int.docs/default-source/coronavirus/transcripts/who-audio-emergencies-corona-virus-press-conference-full-andfinal-11mar2020.pdf?sfvrsn=cb432bb3_2 recorded: March 11, 2020. Accessed on 25 June 2020
[52] Wikipedia. 2020 Coronavirus pandemic in Europe. https://en.wikipedia.org/wiki/2020_corona-virus_pandemic_in_Europe. Accessed on 25 June 2020
[53] Wilder-Smith, A.; Freedman, DO, Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak, J Travel Med (2020) · doi:10.1093/jtm/taaa020
[54] Wilder-Smith, A.; Chiew, CJ; Lee, VJ, Can we contain the COVID-19 outbreak with the same measures as for SARS?, Lancet Infect Dis, 20, e102-107 (2020) · doi:10.1016/S1473-3099(20)30129-8
[55] Yuan, J.; Li, M.; Lv, G.; Lu, ZK, Monitoring transmissibility and mortality of COVID-19 in Europe, Int J Infectious Dis (2017) · doi:10.1016/j.ijid.2020.03.050
[56] Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, Lou Y, Gao D, Yang L, He D, Wang MH (2020) Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. bioRxiv 10.1101/2020.01.23.916395.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.