×

Qualitative analysis and optimal control of a two-strain dengue model with its co-infections. (English) Zbl 1468.37062

Summary: This paper describes a co-infected two-strain Dengue model with bilinear infection rate. Three efforts, namely awareness efforts to protect human from mosquitoes bites, treatment efforts for infected human and mosquitoes killing efforts are considered to eradicate the infections. The treatment reproduction number \(R_0\) of the model is derived, which provides whether Dengue can persist or not. The existence and the stability analysis of different equilibrium points have been investigated. Sotomayor theorem is employed to prove the existence of transcritical bifurcation of the model. The sensitivity analysis has been performed to identify the most effective parameter for controlling the Dengue infection. The model is also used as an optimal control problem as all the three efforts are considered as time dependent functions. The Pontryagin’s maximum principle has been used to characterize the optimal control. Numerical results show the positive impacts for implementing three controls to reduce the Dengue infections. Finally efficiency analysis is carried out, which shows that awareness efforts to protect human from mosquitoes bites along with treatment is more effective than the mosquitoes killing efforts along with treatment.

MSC:

37N25 Dynamical systems in biology
34C23 Bifurcation theory for ordinary differential equations
49J15 Existence theories for optimal control problems involving ordinary differential equations
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Diekman, O.; Heesterbeek, JAP, Mathematical Epidemiology of Infectious Disease (2000), New York: Wiley, New York
[2] Murray, JD, Mathematical Biology (1993), New York: Springer, New York · Zbl 0779.92001 · doi:10.1007/978-3-662-08542-4
[3] Brauer, F.; Castillo-Chavez, C., Mathematical Models in Population Biology and Epidemiology (2011), New York: Springer, New York · Zbl 0967.92015
[4] Carvalho, S.A., da Silva, S.O., da Cunha, I.C.: Mathematical modeling of dengue epidemic: control methods and vaccination strategies, v1, 1-11 (2015). arXiv:1508.00961
[5] Mishra, A.; Gakkhar, S., The effects of awareness and vector control on two strains dengue dynamics, Appl. Math. Comput., 260, 159-167 (2014) · Zbl 1338.92134
[6] Zheng, TT; Nie, LF, Modelling the transmission dynamics of two-strain Dengue in the presence awareness and vector control, J. Theor. Biol., 443, 82-91 (2018) · Zbl 1397.92703 · doi:10.1016/j.jtbi.2018.01.017
[7] Dhanoa, A., Impact of dengue virus (DENV) co-infection on clinical manifestations, disease severity and laboratory parameters, BMC Infect. Dis., 16, 406 (2016) · doi:10.1186/s12879-016-1731-8
[8] Yousaf, Scenario of dengue infection and its control in Pakistan: an up-date and way forward, Asian Pac. J. Trop. Med., 11, 1, 15-23 (2018) · doi:10.4103/1995-7645.223529
[9] Savargaonkar, An epidemiological study of dengue and its coinfections in Delhi, Int. J. Infect. Dis., 74, 41-46 (2018) · doi:10.1016/j.ijid.2018.06.020
[10] Sriprom, M.; Barbazan, P.; Tang, IM, Destabilizing effect of the host immune status on the sequential transmission dynamics of the dengue virus infection, Math. Comput. Model., 45, 9-10, 1053-1066 (2007) · Zbl 1116.92059 · doi:10.1016/j.mcm.2006.09.011
[11] Garba, SM; Gumel, AB, Effect of cross-immunity on the transmission dynamics of two strains of dengue, Int. J. Comput. Math., 87, 2361-2384 (2010) · Zbl 1198.92033 · doi:10.1080/00207160802660608
[12] Sharomi, O.; Malik, T., Optimal control in epidemiology, Ann. Oper. Res., 251, 1, 55-71 (2017) · Zbl 1373.92140 · doi:10.1007/s10479-015-1834-4
[13] Jana, S.; Nandi, SK; Kar, TK, Complex dynamics of an SIR epidemic model with saturated incidence rate and treatment, Acta Biotheor., 64, 1, 65-84 (2016) · doi:10.1007/s10441-015-9273-9
[14] Lashari, AA, Optimal control of an SIR epidemic model with a saturated treatment, Appl. Math. Inf. Sci., 10, 1, 185-191 (2016) · doi:10.18576/amis/100117
[15] Lenhart, S.; Workman, JT, Optimal Control Applied to Biological Model. Mathematical and Computational Biology Series (2007), Boca Raton: Chapman and Hall, Boca Raton · Zbl 1291.92010 · doi:10.1201/9781420011418
[16] Ghosh, JK; Ghosh, U.; Biswas, MHA; Sarkar, S., Qualitative analysis and optimal control strategy of an SIR model with saturated incidence and treatment, Differ. Equ. Dyn. Syst. (2019) · Zbl 1517.37091 · doi:10.1007/s12591-019-00486-8
[17] Abboubakar, H.; Kamgang, JC; Nkamba, LN, Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, J. Math. Biol., 76, 379-427 (2018) · Zbl 1393.37098 · doi:10.1007/s00285-017-1146-1
[18] Van-den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[19] Martcheva, M., An Introduction to Mathematical Epidemiology (2015), New York: Springer, New York · Zbl 1333.92006 · doi:10.1007/978-1-4899-7612-3
[20] Perko, L., Differential Equations and Dynamical Systems (2000), New York: Springer, New York · Zbl 0854.34001
[21] Pandey, A.; Mubayi, A.; Medlock, J., Comparing vector-host and SIR models for dengue transmission, J. Math. Biol., 246, 2, 252-259 (2013) · Zbl 1308.92102
[22] Feng, Z.; Velasco-Hernandez, JX, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol., 35, 5, 523-544 (1997) · Zbl 0878.92025 · doi:10.1007/s002850050064
[23] Dumont, Y.; Chiroleu, F., Vector control for the Chikungunya disease, Math. Biosci. Eng., 7, 313-345 (2010) · Zbl 1259.92071 · doi:10.3934/mbe.2010.7.313
[24] Nakul, C.; James, MH; Jim, MC, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70, 1272-1296 (2008) · Zbl 1142.92025 · doi:10.1007/s11538-008-9299-0
[25] Pontryagin, LS; Boltyanskii, VG; Gamkrelidze, RV; Mishchenko, EF, The Mathematical Theory of Optimal Processes (1962), New Jersey: Wiley, New Jersey · Zbl 0102.32001
[26] Roy, P.K., Chatterjee, A.N.: Effect of HAART on CTL mediated immune cells: an optimal control theoretic approach. Book Chapter in “Electrical Engineering and Applied Computing”. Springer, vol. 90, pp. 595-607 (2011)
[27] ChatterjeeChatterjee, AN; Roy, PK, Anti-viral drug treatment along with immune activator IL-2: a control based mathematical approach for HIV infection, Int. J. Control, 85, 2, 220-237 (2012) · Zbl 1282.93107 · doi:10.1080/00207179.2011.643414
[28] Roy, PK; Chowdhury, S.; Chatterjee, AN; Chattopadhyay, J.; Norman, R., A mathematical model on CTL mediated control of HIV infection in a long term drug therapy, J. Biol. Syst., 21, 3, 1350019 (2013) · Zbl 1342.92102 · doi:10.1142/S0218339013500198
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.