×

Hamiltonian dynamics and control of a joint autonomous land-air operation. (English) Zbl 1355.93132

Summary: Rapid technological advances in artificial intelligence and additive manufacturing have fueled the speculation that large numbers of cheap autonomous robots swarming to achieve mission objectives with minimal human control will revolutionize search-and-rescue, disaster relief and humanitarian assistance operations. These kinds of operations usually occur in a GPS-denied and communication austere environment, where only nearest-neighbors networking among the autonomous robots may be possible. Hence, the ability to predict and control the real-time global dynamic behavior of this high-dimensional, highly complex and highly nonlinear, decentralized autonomous system, immersed in an uncertain and changing environment – and yet successfully performing at the edge of chaos – will be critical. This paper proposes a rigorous computational framework for prediction and control of a large-scale joint swarm of unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs), performing a joint autonomous land-air operation. We present two cases for this joint \(\mathrm{UGV}+\mathrm{UAV}\) swarm: (1) a discrete Hamiltonian dynamics and affine control over Euclidean groups of individual UGVs and UAVs in a swarm of hundreds of vehicles and (2) a continuous 2-soliton ‘signature’ evolution of a joint UGV and UAV swarm of thousands of vehicles.

MSC:

93C85 Automated systems (robots, etc.) in control theory
70E60 Robot dynamics and control of rigid bodies
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ivancevic, V., Reid, D., Aidman, E.: Crowd behavior dynamics: entropic path-integral model. Nonlinear Dyn. 59, 351-373 (2010) · Zbl 1183.37144 · doi:10.1007/s11071-009-9544-6
[2] Ivancevic, V., Reid, D.: Turbulence and shock-waves in crowd dynamics. Nonlinear Dyn. 68, 285-304 (2012) · Zbl 1247.91124 · doi:10.1007/s11071-011-0227-8
[3] Ivancevic, V., Ivancevic, T.: Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals. Springer, Berlin (2008) · Zbl 1152.37002
[4] Ivancevic, V., Reid, D., Scholz, J.: Action-amplitude approach to controlled entropic self-organization. Entropy 16, 2699-2712 (2014) · doi:10.3390/e16052699
[5] Ivancevic, V.G.: Nonlinear complexity of human biodynamics engine. Nonlinear Dyn. 61(1-2), 123-139 (2010) · Zbl 1204.93085 · doi:10.1007/s11071-009-9636-3
[6] Lindgren, D.R., Hague, T., Probert Smith, P.J., Marchant, J.A.: Relating torque and slip in an odometric model for an autonomous agricultural vehicle. Auton. Robots 13(1), 73-86 (2002) · Zbl 1012.68652 · doi:10.1023/A:1015682206018
[7] Petrovskaya, A., Thrun, S.: Model based vehicle detection and tracking for autonomous urban driving. Auton. Robots 26(2-3), 123-139 (2009) · doi:10.1007/s10514-009-9115-1
[8] Schoellig, A.P., Mueller, F.L., D’Andrea, R.: Optimization-based iterative learning for precise quadrocopter trajectory tracking. Auton. Robots 33(1-2), 103-127 (2012) · doi:10.1007/s10514-012-9283-2
[9] Daly, J.M., Ma, Y., Waslander, S.L.: Coordinated landing of a quadrotor on a skid-steered ground vehicle in the presence of time delays. Auton. Robots 38(2), 179-191 (2015) · doi:10.1007/s10514-014-9400-5
[10] Ivancevic, V., Reid, D.: Complexity and Control: Towards a Rigorous Behavioral Theory of Complex Dynamical Systems. World Scientific, Singapore (2015) · Zbl 1321.93001
[11] Prokopenko, M., Gershenson, C.: Entropy methods in guided self-organisation. Entropy 16(10), 5232-5241 (2014) · doi:10.3390/e16105232
[12] Zhou, J., Shi, Z.-K.: A new lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of lateral discomfort. Nonlinear Dyn. (2015). doi:10.1007/s11071-015-2052-y · Zbl 1348.37110
[13] Ivancevic, V., Ivancevic, T.: New Trends in Control Theory. World Scientific, Singapore (2012) · Zbl 1352.93005
[14] Ivancevic, V.: New mechanics of traumatic brain injury. Cogn. Neurodyn. 3, 281-293 (2009)
[15] Mougin, G., Magnaudet, J.: The generalized Kirchhoff equations and their application to the interaction between a rigid body and an arbitrary time-dependent viscous flow. Int. J. Multiph. Flow 28(11), 1837-1851 (2002) · Zbl 1137.76687 · doi:10.1016/S0301-9322(02)00078-2
[16] Ivancevic, V., Ivancevic, T.: Geometrical Dynamics of Complex Systems. Springer, Berlin (2006) · Zbl 1092.53001 · doi:10.1007/1-4020-4545-X
[17] Ivancevic, V., Ivancevic, T.: Quantum Neural Computation. Springer, Berlin (2009) · Zbl 1417.81005
[18] Ivancevic, V., Aidman, E.: Life-space foam: a medium for motivational and cognitive dynamics. Phys. A 382, 616-630 (2007) · doi:10.1016/j.physa.2007.04.025
[19] van der Schaft, A.J.: Port-Hamiltonian systems: an introductory survey. In: Proceedings of International Congress of Mathematicians, Madrid, Spain (2006) · Zbl 1108.93012
[20] Maschke, B., van der Schaft, A.J., Breedveld, P.: An intrinsic Hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. J. Frankl. Inst. 329, 923-966 (1992) · Zbl 0807.70015 · doi:10.1016/S0016-0032(92)90049-M
[21] Ivancevic, V., Ivancevic, T.: Neuro-Fuzzy Associative Machinery for Comprehensive Brain and Cognition Modelling. Springer, Berlin (2007) · Zbl 1193.91131 · doi:10.1007/978-3-540-48396-0
[22] Cash, J.R., Karp, A.H.: A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM Trans. Math. Softw. 16, 201-222 (1990) · Zbl 0900.65234 · doi:10.1145/79505.79507
[23] Ivancevic, V.: Adaptive-wave alternative for the black-scholes option pricing model. Cogn. Comput. 2(1), 17-30 (2010) · doi:10.1007/s12559-009-9031-x
[24] Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539-541 (1970). (in Russian) · Zbl 0217.25004
[25] Biondini, G., Pelinovsky, D.E.: Kadomtsev-Petviashvili equation. Scholarpedia 3(10), 6539 (2008) · doi:10.4249/scholarpedia.6539
[26] Deconinck, B.: Canonical variables for multiphase solutions of the KP equation. Stud. Appl. Math. 104, 229-292 (2000) · Zbl 1002.37033 · doi:10.1111/1467-9590.00135
[27] Veselov, A.P.: Hamiltonian formalism for the Novikov-Krichever equations for the commutativity of two operators. Funct. Anal. Appl. 13, 1-6 (1979) · Zbl 0423.70018 · doi:10.1007/BF01076433
[28] Miwa, T., Jimbo, M., Date, E.: Solitons: Differential Equations, Symmetries, and Infinite Dimensional Algebras. Cambridge University Press, Cambridge (2000) · Zbl 0986.37068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.