×

Spider covering algorithms for network design problems. (English) Zbl 1397.90077

Fukunaga, Takuro (ed.) et al., Combinatorial optimization and graph algorithms. Communications of NII Shonan meetings. Singapore: Springer (ISBN 978-981-10-6146-2/hbk; 978-981-10-6147-9/ebook). 43-66 (2017).
Summary: The spider covering framework was originally proposed by P. Klein and R. Ravi [J. Algorithms 19, No. 1, 104–115 (1995; Zbl 0836.68046)] in their attempt to design a tight approximation algorithm for the node-weighted network design problem. In this framework, an algorithm constructs a solution by repeatedly choosing a low-density graph. The analysis based on this framework basically follows from the idea used in the analysis of the well-known greedy algorithm for the set cover problem. After Klein and Ravi, the framework has been sophisticated in a series of studies, and efficient approximation algorithms for numerous network design problems have been proposed. In this article, we survey these studies on the spider covering framework.
For the entire collection see [Zbl 1394.90011].

MSC:

90B10 Deterministic network models in operations research
05B40 Combinatorial aspects of packing and covering
68W25 Approximation algorithms

Citations:

Zbl 0836.68046
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] 1.P.N. Klein, R. Ravi, A nearly best-possible approximation algorithm for node-weighted Steiner trees, in \(Proceedings of the 3rd Integer Programming and Combinatorial Optimization Conference\), Erice, Italy, 29 April-1 May (1993), pp. 323-332 · Zbl 0925.68190
[2] 2.P.N. Klein, R. Ravi, A nearly best-possible approximation algorithm for node-weighted Steiner trees. J. Algorithms 19(1), 104-115 (1995) · Zbl 0836.68046
[3] 3.J. Byrka, F. Grandoni, T. Rothvoß, L. Sanità, Steiner tree approximation via iterative randomized rounding. J. ACM 60(1), 6 (2013) · Zbl 1281.68234 · doi:10.1145/2432622.2432628
[4] 4.M.X. Goemans, N. Olver, T. Rothvoß, R. Zenklusen, Matroids and integrality gaps for hypergraphic steiner tree relaxations, in \(Proceedings of the 44th Symposium on Theory of Computing Conference, STOC\), New York, NY, USA, 19 - 22 May (2012), pp. 1161-1176 · Zbl 1286.05024
[5] 5.S. Guha, A. Moss, J. Naor, B. Schieber, Efficient recovery from power outage (extended abstract), in \(Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing\), Atlanta, Georgia, USA, 1-4 May (1999), pp. 574-582 · Zbl 1345.90042
[6] 6.Z. Nutov, Approximating Steiner networks with node-weights. SIAM J. Comput. 39(7), 3001-3022 (2010) · Zbl 1217.68248 · doi:10.1137/080729645
[7] 7.Z. Nutov, Approximating minimum-cost connectivity problems via uncrossable bifamilies. ACM Trans. Algorithms 9(1), 1 (2012) · Zbl 1301.68275 · doi:10.1145/2390176.2390177
[8] 8.Z. Nutov, Survivable network activation problems. Theor. Comput. Sci. 514, 105-115 (2013) · Zbl 1277.68025 · doi:10.1016/j.tcs.2012.10.054
[9] 9.T. Fukunaga, Covering problems in edge- and node-weighted graphs. Disc. Opt. 20, 40-61 (2016) · Zbl 1387.90216
[10] 10.D. Bienstock, M.X. Goemans, D. Simchi-Levi, D.P. Williamson, A note on the prize collecting traveling salesman problem. Math. Program. 59, 413-420 (1993) · Zbl 0793.90089 · doi:10.1007/BF01581256
[11] 11.C. Chekuri, A. Ene, A. Vakilian, Prize-collecting survivable network design in node-weighted graphs, \(APPROX-RANDOM\). \(Lecture Notes in Computer Science\), vol. 7408 (2012), pp. 98-109 · Zbl 1372.68206
[12] 12.T. Fukunaga, Spider covers for prize-collecting network activation problem, in \(Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015\), San Diego, CA, USA, 4-6 Jan (2015), pp. 9-24 · Zbl 1371.68206
[13] 13.D. Panigrahi, Survivable network design problems in wireless networks, in \(Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011\), San Francisco, CA, USA, 23-25 Jan (2011), pp. 1014-1027 · Zbl 1373.68053
[14] 14.A. Vakilian, Node-weighted prize-collecting survivable network design problems. Master’s thesis, University of Illinois at Urbana-Champaign, 2013
[15] 15.J. Chuzhoy, S. Khanna, An O · doi:10.4086/toc.2012.v008a018
[16] 16.Z. Nutov, Approximating subset · Zbl 1281.68237 · doi:10.1016/j.jda.2012.08.001
[17] 17.A. Moss, Y. Rabani, Approximation algorithms for constrained node weighted Steiner tree problems. SIAM J. Comput. 37(2), 460-481 (2007) · Zbl 1137.68063 · doi:10.1137/S0097539702420474
[18] 18.J. Könemann, S.S. Sadeghabad, L. Sanità, An LMP
[19] 19.M.H. Bateni, M.T. Hajiaghayi, V. Liaghat, Improved approximation algorithms for (budgeted) node-weighted Steiner problems, in \(Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013\), Riga, Latvia, 8-12 July 2013, Proceedings, Part I. Lecture Notes in Computer Science, vol. 7965 (2013), pp. 81-92 · Zbl 1336.68288
[20] 20.C. Chekuri, M.T. Hajiaghayi, G. Kortsarz, M.R. Salavatipour, Approximation algorithms for nonuniform buy-at-bulk network design. SIAM J. Comput. 39(5), 1772-1798 (2010) · Zbl 1207.90019 · doi:10.1137/090750317
[21] 21.E. Halperin, R. Krauthgamer, Polylogarithmic inapproximability, in \(Proceedings of the 35th Annual ACM Symposium on Theory of Computing\), San Diego, CA, USA, June 9-11 (2003), pp. 585-594
[22] 22.M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel, S. Guha, M. Li, Approximation algorithms for directed Steiner problems. J. Algorithms 33(1), 73-91 (1999) · Zbl 0937.68155 · doi:10.1006/jagm.1999.1042
[23] 23.C. Chekuri, G. Even, A. Gupta, D. Segev, Set connectivity problems in undirected graphs and the directed steiner network problem. ACM Trans. Algorithms 7(2), 18 (2011) · Zbl 1295.68211 · doi:10.1145/1921659.1921664
[24] 24.M. Feldman, G. Kortsarz, Z. Nutov, Improved approximation algorithms for directed Steiner forest. J. Comput. Syst. Sci. 78(1), 279-292 (2012) · Zbl 1237.68246 · doi:10.1016/j.jcss.2011.05.009
[25] 25.M. Imase, B.M. Waxman, Dynamic steiner tree problem. SIAM J. Discrete Math. 4(3), 369-384 (1991) · Zbl 0739.05030 · doi:10.1137/0404033
[26] 26.J. Naor, D. Panigrahi, M. Singh, Online node-weighted Steiner tree and related problems, in \(IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011\), Palm Springs, CA, USA, 22-25 Oct (2011) pp. 210-219 · Zbl 1292.68128
[27] 27.M.T. Hajiaghayi, V. Liaghat, D. Panigrahi, Online node-weighted steiner forest and extensions via disk paintings. . SIAM J. Comput. 46(3), 911-935 (2017) · Zbl 1370.68335
[28] 28.A. Ene, D. Chakrabarty, R. Krishnaswamy, D. Panigrahi, Online buy-at-bulk network design, in \(IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley\), CA, USA, 17-20 Oct (2015), pp. 545-562 · Zbl 1396.68135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.