×

Cause-and-effect of linear mechanisms sustaining wall turbulence. (English) Zbl 1461.76309

Summary: Despite the nonlinear nature of turbulence, there is evidence that part of the energy-transfer mechanisms sustaining wall turbulence can be ascribed to linear processes. The different scenarios stem from linear stability theory and comprise exponential instabilities, neutral modes, transient growth from non-normal operators and parametric instabilities from temporal mean flow variations, among others. These mechanisms, each potentially capable of leading to the observed turbulence structure, are rooted in simplified physical models. Whether the flow follows any or a combination of them remains elusive. Here, we evaluate the linear mechanisms responsible for the energy transfer from the streamwise-averaged mean flow \((\boldsymbol{U})\) to the fluctuating velocities \((\boldsymbol{u}')\). To that end, we use cause-and-effect analysis based on interventions: manipulation of the causing variable leads to changes in the effect. This is achieved by direct numerical simulation of turbulent channel flows at low Reynolds number, in which the energy transfer from \(\boldsymbol{U}\) to \(\boldsymbol{u}'\) is constrained to preclude a targeted linear mechanism. We show that transient growth is sufficient for sustaining realistic wall turbulence. Self-sustaining turbulence persists when exponential instabilities, neutral modes and parametric instabilities of the mean flow are suppressed. We further show that a key component of transient growth is the Orr/push-over mechanism induced by spanwise variations of the base flow. Finally, we demonstrate that an ensemble of simulations with various frozen-in-time \(\boldsymbol{U}\) arranged so that only transient growth is active, can faithfully represent the energy transfer from \(\boldsymbol{U}\) to \(\boldsymbol{u}'\) as in realistic turbulence. Our approach provides direct cause-and-effect evaluation of the linear energy-injection mechanisms from \(\boldsymbol{U}\) to \(\boldsymbol{u}'\) in the fully nonlinear system and simplifies the conceptual model of self-sustaining wall turbulence.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76F02 Fundamentals of turbulence
76F40 Turbulent boundary layers
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adrian, R.J.2007Hairpin vortex organization in wall turbulence. Phys. Fluids19 (4), 041301. · Zbl 1146.76307
[2] Ahmadi, M., Valmorbida, G., Gayme, D. & Papachristodoulou, A.2019A framework for input-output analysis of wall-bounded shear flows. J. Fluid Mech.873, 742-785. · Zbl 1419.76126
[3] Alizard, F.2015Linear stability of optimal streaks in the log-layer of turbulent channel flows. Phys. Fluids27 (10), 105103.
[4] Andersson, P., Brandt, L., Bottaro, A. & Henningson, D.S.2001On the breakdown of boundary layer streaks. J. Fluid Mech.428, 29-60. · Zbl 0983.76025
[5] Asai, M., Minagawa, M. & Nishioka, M.2002The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech.455, 289-314. · Zbl 1147.76300
[6] Auerbach, D., Cvitanović, P., Eckmann, J.-P., Gunaratne, G. & Procaccia, I.1987Exploring chaotic motion through periodic orbits. Phys. Rev. Lett.58, 2387-2389.
[7] Bae, H.J., Encinar, M.P. & Lozano-Durán, A.2018aCausal analysis of self-sustaining processes in the logarithmic layer of wall-bounded turbulence. J. Phys.: Conf. Ser.1001, 012013.
[8] Bae, H.J., Lozano-Durán, A., Bose, S.T. & Moin, P.2018bTurbulence intensities in large-eddy simulation of wall-bounded flows. Phys. Rev. Fluids3, 014610.
[9] Bae, H.J., Lozano-Durán, A., Bose, S.T. & Moin, P.2019Dynamic slip wall model for large-eddy simulation. J. Fluid Mech.859, 400-432. · Zbl 1415.76322
[10] Batchelor, G.K. & Proudman, I.1954The effect of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Maths7 (1), 83-103. · Zbl 0055.19201
[11] Beebee, H., Hitchcock, C. & Menzies, P.2012The Oxford Handbook of Causation. Oxford University Press.
[12] Bottaro, A. & Klingmann, G.B.1996On the linear breakdown of Görtler vortices. Eur. J. Mech. B/Fluids15, 301. · Zbl 0884.76018
[13] Bretheim, J.U., Meneveau, C. & Gayme, D.F.2018A restricted nonlinear large eddy simulation model for high Reynolds number flows. J. Turbul.19 (2), 141-166.
[14] Brown, G.L. & Roshko, A.1974On density effects and large structure in turbulent mixing layers. J. Fluid Mech.64 (4), 775-816. · Zbl 1416.76061
[15] Brown, G.L. & Thomas, A.S.W.1977Large structure in a turbulent boundary layer. Phys. Fluids20 (10), S243-S252.
[16] Butler, K.M. & Farrell, B.F.1993Optimal perturbations and streak spacing in wall-bounded turbulent shear flow. Phys. Fluids A5, 774-777.
[17] Cambon, C. & Scott, J.F.1999Linear and nonlinear models of anisotropic turbulence. Annu. Rev. Fluid Mech.31 (1), 1-53.
[18] Cassinelli, A., De Giovanetti, M. & Hwang, Y.2017Streak instability in near-wall turbulence revisited. J. Turbul.18 (5), 443-464.
[19] Chagelishvili, G., Hau, J.-N., Khujadze, G. & Oberlack, M.2016Mechanical picture of the linear transient growth of vortical perturbations in incompressible smooth shear flows. Phys. Rev. Fluids1, 043603.
[20] Chernyshenko, S.I. & Baig, M.F.2005The mechanism of streak formation in near-wall turbulence. J. Fluid Mech.544, 99-131. · Zbl 1083.76031
[21] Chini, G.P., Montemuro, B., White, C.M. & Klewicki, J.2017A self-sustaining process model of inertial layer dynamics in high Reynolds number turbulent wall flows. Phil. Trans. R. Soc. A375 (2089), 20160090.
[22] Choi, K.-S. & Clayton, B.R.2001The mechanism of turbulent drag reduction with wall oscillation. Intl J. Heat Fluid Flow22 (1), 1-9.
[23] Constantinou, N.C., Lozano-Durán, A., Nikolaidis, M.-A., Farrell, B.F., Ioannou, P.J. & Jiménez, J.2014Turbulence in the highly restricted dynamics of a closure at second order: comparison with DNS. J. Phys.: Conf. Ser.506, 012004.
[24] Cossu, C. & Hwang, Y.2017Self-sustaining processes at all scales in wall-bounded turbulent shear flows. Phil. Trans. R. Soc. A375 (2089), 20160088.
[25] Cossu, C., Pujals, G. & Depardon, S.2009Optimal transient growth and very large-scale structures in turbulent boundary layers. J. Fluid Mech.619, 79-94. · Zbl 1156.76400
[26] Cvitanović, P.1991Periodic orbits as the skeleton of classical and quantum chaos. Physica D51 (1), 138-151. · Zbl 0744.58013
[27] Deguchi, K. & Hall, P.2015Free-stream coherent structures in growing boundary layers: a link to near-wall streaks. J. Fluid Mech.778, 451-484. · Zbl 1382.76107
[28] Deguchi, K., Hall, P. & Walton, A.2013The emergence of localized vortex-wave interaction states in plane Couette flow. J. Fluid Mech.721, 58-85. · Zbl 1287.76099
[29] Del Álamo, J.C. & Jiménez, J.2006Linear energy amplification in turbulent channels. J. Fluid Mech.559, 205-213. · Zbl 1095.76021
[30] Eberhardt, F. & Scheines, R.2007Interventions and causal inference. Phil. Sci.74 (5), 981-995.
[31] Eichler, M.2013Causal inference with multiple time series: principles and problems. Phil. Trans. R. Soc. A371 (1997), 20110613. · Zbl 1353.62094
[32] Ellingsen, T. & Palm, E.1975Stability of linear flow. Phys. Fluids18 (4), 487-488. · Zbl 0308.76030
[33] Encinar, M.P. & Jiménez, J.2020Momentum transfer by linearised eddies in turbulent channel flows. J. Fluid Mech.895, A23. · Zbl 1460.76463
[34] Faisst, H. & Eckhardt, B.2003Traveling waves in pipe flow. Phys. Rev. Lett.91, 224502. · Zbl 1116.76362
[35] Farrell, B.F.1988Optimal excitation of perturbations in viscous shear flow. Phys. Fluids31, 2093-2102.
[36] Farrell, B.F., Gayme, D.F. & Ioannou, P.J.2017aA statistical state dynamics approach to wall turbulence. Phil. Trans. R. Soc. A375 (2089), 20160081.
[37] Farrell, B.F. & Ioannou, P.J.1993aOptimal excitation of three-dimensional perturbations in viscous constant shear flow. Phys, Fluids A5 (6), 1390-1400. · Zbl 0779.76030
[38] Farrell, B.F. & Ioannou, P.J.1993bStochastic forcing of the linearized Navier-Stokes equations. Phys. Fluids5 (11), 2600-2609. · Zbl 0809.76078
[39] Farrell, B.F. & Ioannou, P.J.1996Generalized stability theory. Part I: autonomous operators. J. Atmos. Sci.53 (14), 2025-2040.
[40] Farrell, B.F. & Ioannou, P.J.1999Perturbation growth and structure in time dependent flows. J. Atmos. Sci.56, 3622-3639.
[41] Farrell, B.F. & Ioannou, P.J.2012Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech.708, 149-196. · Zbl 1275.76125
[42] Farrell, B.F. & Ioannou, P.J.2017Statistical state dynamics-based analysis of the physical mechanisms sustaining and regulating turbulence in Couette flow. Phys. Rev. Fluids2, 084608.
[43] Farrell, B.F. & Ioannou, P.J.2019 Statistical state dynamics: a new perspective on turbulence in shear flow. In Zonal Jets: Phenomenology, Genesis, and Physics (ed. Galperin, B. & Read, P.), pp. 380-400. Cambridge University Press.
[44] Farrell, B.F., Ioannou, P.J., Jiménez, J., Constantinou, N.C., Lozano-Durán, A. & Nikolaidis, M.-A.2016A statistical state dynamics-based study of the structure and mechanism of large-scale motions in plane Poiseuille flow. J. Fluid Mech.809, 290-315. · Zbl 1383.76225
[45] Farrell, B.F., Ioannou, P.J. & Nikolaidis, M.-A.2017bInstability of the roll-streak structure induced by background turbulence in pretransitional Couette flow. Phys. Rev. Fluids2, 034607.
[46] Fisher, R.A.1936Design of experiments. Br. Med. J.1 (3923), 554-554.
[47] Flores, O. & Jiménez, J.2010Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids22 (7), 071704.
[48] Gibson, J.F., Halcrow, J. & Cvitanović, P.2008Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech.611, 107-130. · Zbl 1151.76453
[49] Gibson, J.F., Halcrow, J. & Cvitanović, P.2009Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech.638, 243-266. · Zbl 1183.76688
[50] De Giovanetti, M., Sung, H.J. & Hwang, Y.2017Streak instability in turbulent channel flow: the seeding mechanism of large-scale motions. J. Fluid Mech.832, 483-513. · Zbl 1419.76310
[51] Gustavsson, L.H.1991Energy growth of three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech.224, 241-260. · Zbl 0717.76044
[52] Hack, M.J.P. & Moin, P.2018Coherent instability in wall-bounded shear. J. Fluid Mech.844, 917-955. · Zbl 1444.76060
[53] Hack, M.J.P. & Zaki, T.A.2014Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech.741, 280-315.
[54] Hall, P.2018Vortex-wave interaction arrays: a sustaining mechanism for the log layer?J. Fluid Mech.850, 46-82. · Zbl 1415.76161
[55] Hall, P. & Sherwin, S.2010Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech.661, 178-205. · Zbl 1205.76085
[56] Hall, P. & Smith, F.T.1988The nonlinear interaction of Tollmien-Schlichting waves and Taylor-Görtler vortices in curved channel flows. Proc. R. Soc. Lond. A417 (1853), 255-282. · Zbl 0657.76047
[57] Hall, P. & Smith, F.T.1991On strongly nonlinear vortex/wave interactions in boundary-layer transition. J. Fluid Mech.227, 641-666. · Zbl 0721.76027
[58] Hamilton, J.M., Kim, J. & Waleffe, F.1995Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech.287, 317-348. · Zbl 0867.76032
[59] Hœpffner, J., Brandt, L. & Henningdon, D.S.2005Transient growth on boundary layer streaks. J. Fluid Mech.537, 91-100. · Zbl 1073.76028
[60] Högberg, M., Bewley, T.R. & Henningson, D.S.2003Linear feedback control and estimation of transition in plane channel flow. J. Fluid Mech.481, 149-175. · Zbl 1163.76353
[61] Hussain, A.K.M.F.1983Coherent structures-reality and myth. Phys. Fluids26 (10), 2816-2850. · Zbl 0524.76066
[62] Hussain, A.K.M.F.1986Coherent structures and turbulence. J. Fluid Mech.173, 303-356.
[63] Hussain, A.K.M.F. & Reynolds, W.C.1970The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech.41 (2), 241-258.
[64] Hwang, Y. & Cossu, C.2010aAmplification of coherent streaks in the turbulent Couette flow: an input-output analysis at low Reynolds number. J. Fluid Mech.643, 333-348. · Zbl 1189.76191
[65] Hwang, Y. & Cossu, C.2010bLinear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech.664, 51-73. · Zbl 1221.76104
[66] Hwang, Y. & Cossu, C.2010cSelf-sustained process at large scales in turbulent channel flow. Phys. Rev. Lett.105, 044505.
[67] Hwang, Y. & Cossu, C.2011Self-sustained processes in the logarithmic layer of turbulent channel flows. Phys. Fluids23 (6), 061702. · Zbl 1308.76147
[68] Hwang, Y., Willis, A.P. & Cossu, C.2016Invariant solutions of minimal large-scale structures in turbulent channel flow for \(Re_{\tau }\) up to 1000. J. Fluid Mech.802, R1. · Zbl 1462.76108
[69] Hyttinen, A., Eberhardt, F. & Hoyer, P.O.2013Experiment selection for causal discovery. J. Machine Learning Res.2013 (14), 3041-3071. · Zbl 1318.62175
[70] Jiménez, J.1987 Coherent structures and dynamical systems. In CTR - Proceedings of the Summer Program, pp. 323-324. Center for Turbulence Research, Stanford University.
[71] Jiménez, J.2012Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech.44, 27-45. · Zbl 1388.76089
[72] Jiménez, J.2013How linear is wall-bounded turbulence?Phys. Fluids25, 110814.
[73] Jiménez, J.2015Direct detection of linearized bursts in turbulence. Phys. Fluids27 (6), 065102.
[74] Jiménez, J.2018Coherent structures in wall-bounded turbulence. J. Fluid Mech.842, P1. · Zbl 1419.76316
[75] Jiménez, J., Kawahara, G., Simens, M.P., Nagata, M. & Shiba, M.2005Characterization of near-wall turbulence in terms of equilibrium and “bursting” solutions. Phys. Fluids17 (1), 015105. · Zbl 1187.76248
[76] Jiménez, J. & Moin, P.1991The minimal flow unit in near-wall turbulence. J. Fluid Mech.225, 213-240. · Zbl 0721.76040
[77] Jiménez, J. & Pinelli, A.1999The autonomous cycle of near-wall turbulence. J. Fluid Mech.389, 335-359. · Zbl 0948.76025
[78] Jovanović, M.R.2021 From bypass transition to flow control and data-driven turbulence modeling: an input-output viewpoint. Ann. Rev. Fluid Mech. 53, 1. · Zbl 1459.76072
[79] Jovanović, M.R. & Bamieh, B.2005Componentwise energy amplification in channel flows. J. Fluid Mech.534, 145-183. · Zbl 1074.76016
[80] Jung, W.J., Mangiavacchi, N. & Akhavan, R.1992Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A4 (8), 1605-1607.
[81] Karp, M. & Cohen, J.2014Tracking stages of transition in Couette flow analytically. J. Fluid Mech.748, 896-931.
[82] Karp, M. & Cohen, J.2017On the secondary instabilities of transient growth in Couette flow. J. Fluid Mech.813, 528-557. · Zbl 1383.76190
[83] Karp, M. & Hack, M.J.P.2018Transition to turbulence over convex surfaces. J. Fluid Mech.855, 1208-1237. · Zbl 1415.76275
[84] Kawahara, G., Jiménez, J., Uhlmann, M. & Pinelli, A.2003Linear instability of a corrugated vortex sheet – a model for streak instability. J. Fluid Mech.483, 315-342. · Zbl 1055.76022
[85] Kawahara, G. & Kida, S.2001Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech.449, 291-300. · Zbl 0996.76034
[86] Kawahara, G., Uhlmann, M. & Van Veen, L.2012The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech.44 (1), 203-225. · Zbl 1352.76031
[87] Kim, J. & Bewley, T.R.2006A linear systems approach to flow control. Annu. Rev. Fluid Mech.39, 383-417. · Zbl 1296.76074
[88] Kim, J., Kline, S.J. & Reynolds, W.C.1971The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech.50, 133-160.
[89] Kim, J. & Lim, J.2000A linear process in wall-bounded turbulent shear flows. Phys. Fluids12 (8), 1885-1888. · Zbl 1184.76284
[90] Kim, J. & Moin, P.1985Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys.59, 308-323. · Zbl 0582.76038
[91] Klebanoff, P.S., Tidstrom, K.D. & Sargent, L.M.1962The three-dimensional nature of boundary-layer instability. J. Fluid Mech.12 (1), 1-34. · Zbl 0131.41901
[92] Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W.1967The structure of turbulent boundary layers. J. Fluid Mech.30 (4), 741-773. · Zbl 1461.76274
[93] Kreilos, T. & Eckhardt, B.2012Periodic orbits near onset of chaos in plane Couette flow. Chaos22 (4), 047505.
[94] Laadhari, F., Skandaji, L. & Morel, R.1994Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids6 (10), 3218-3220.
[95] Landahl, M.T.1975Wave breakdown and turbulence. SIAM J. Appl. Maths28, 735-756. · Zbl 0276.76023
[96] Landahl, M.T.1990On sublayer streaks. J. Fluid Mech.212, 593-614. · Zbl 0695.76027
[97] Lee, M.J., Kim, J. & Moin, P.1990Structure of turbulence at high shear rate. J. Fluid Mech.216, 561-583.
[98] Li, F. & Malik, M.R.1995Fundamental and subharmonic secondary instabilities of Görtler vortices. J. Fluid Mech.297, 77-100. · Zbl 0865.76024
[99] Liang, X.S. & Lozano-Durán, A.2017 A preliminary study of the causal structure in fully developed near-wall turbulence. In CTR - Proceedings of the Summer Program, pp. 233-242. Center for Turbulence Research, Stanford University.
[100] Lozano-Durán, A. & Bae, H.J.2019Characteristic scales of Townsend’s wall-attached eddies. J. Fluid Mech.868, 698-725. · Zbl 1415.76351
[101] Lozano-Durán, A., Bae, H.J. & Encinar, M.P.2019Causality of energy-containing eddies in wall turbulence. J. Fluid Mech.882, A2. · Zbl 1430.76274
[102] Lozano-Durán, A. & Bae, H.J.2016 Turbulent channel with slip boundaries as a benchmark for subgrid-scale models in LES. In Center for Turbulence Research - Annual Research Briefs, pp. 97-103. Center for Turbulence Research, Stanford University.
[103] Lozano-Durán, A. & Jiménez, J.2014Time-resolved evolution of coherent structures in turbulent channels: characterization of eddies and cascades. J. Fluid. Mech.759, 432-471.
[104] Lozano-Durán, A., Karp, M. & Constantinou, N.C.2018 Wall turbulence with constrained energy extraction from the mean flow. In Center for Turbulence Research - Annual Research Briefs, pp. 209-220. Center for Turbulence Research, Stanford University.
[105] Lozano-Durán, A., Nikolaidis, M.-A., Constantinou, N.C. & Karp, M.2020Alternative physics to understand wall turbulence: Navier-Stokes equations with modified linear dynamics. J. Phys.: Conf. Ser.1522, 012003.
[106] Malkus, W.V.R.1956Outline of a theory of turbulent shear flow. J. Fluid Mech.1 (5), 521-539. · Zbl 0073.20803
[107] Marquillie, M., Ehrenstein, U. & Laval, J.-P.2011Instability of streaks in wall turbulence with adverse pressure gradient. J. Fluid Mech.681, 205-240. · Zbl 1241.76178
[108] Mckeon, B.J.2017The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech.817, P1. · Zbl 1383.76239
[109] Mckeon, B.J. & Sharma, A.S.2010A critical-layer framework for turbulent pipe flow. J. Fluid Mech.658, 336-382. · Zbl 1205.76138
[110] Moarref, R., Sharma, A.S., Tropp, J.A. & Mckeon, B.J.2013Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech.734, 275-316. · Zbl 1294.76181
[111] Montemuro, B., White, C.M., Klewicki, J.C. & Chini, G.P.2020 A self-sustaining process theory for uniform momentum zones and internal shear layers in high Reynolds number shear flows. J. Fluid Mech.901, A28. · Zbl 1460.76173
[112] Morra, P., Semeraro, O., Henningson, D.S. & Cossu, C.2019On the relevance of Reynolds stresses in resolvent analyses of turbulent wall-bounded flows. J. Fluid Mech.867, 969-984. · Zbl 1415.76355
[113] Nagata, M.1990Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech.217, 519-527.
[114] Nikolaidis, M.-A., Farrell, B.F., Ioannou, P.J., Gayme, D.F., Lozano-Durán, A. & Jiménez, J.2016A POD-based analysis of turbulence in the reduced nonlinear dynamics system. J. Phys.: Conf. Ser.708, 012002.
[115] Orlandi, P.2000Fluid Flow Phenomena: A Numerical Toolkit. Springer. · Zbl 0985.76001
[116] Orr, W.M.F.1907The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: a viscous liquid. Math. Proc. R. Ir. Acad.27, 69-138.
[117] Ozcakir, O., Hall, P. & Tanveer, S.2019Nonlinear exact coherent structures in pipe flow and their instabilities. J. Fluid Mech.868, 341-368. · Zbl 1415.76280
[118] Ozcakir, O., Tanveer, S., Hall, P. & Overman, E.A.2016Travelling wave states in pipe flow. J. Fluid Mech.791, 284-328. · Zbl 1338.76024
[119] Panton, R.L.2001Overview of the self-sustaining mechanisms of wall turbulence. Prog. Aerosp. Sci.37 (4), 341-383.
[120] Park, D.S. & Huerre, P.1995Primary and secondary instabilities of the asymptotic suction boundary layer on a curved plate. J. Fluid Mech.283, 249-272. · Zbl 0835.76028
[121] Park, J., Hwang, Y. & Cossu, C.2011On the stability of large-scale streaks in turbulent Couette and Poiseulle flows. C. R. Méc.339 (1), 1-5. · Zbl 1419.76211
[122] Park, J.S. & Graham, M.D.2015Exact coherent states and connections to turbulent dynamics in minimal channel flow. J. Fluid Mech.782, 430-454. · Zbl 1381.76097
[123] Pearl, J.2009Causality: Models, Reasoning and Inference, 2nd edn.Cambridge University Press. · Zbl 1188.68291
[124] Phillips, W.R.C., Wu, Z. & Lumley, J.L.1996On the formation of longitudinal vortices in a turbulent boundary layer over wavy terrain. J. Fluid Mech.326, 321-341. · Zbl 0920.76027
[125] Pujals, G., García-Villalba, M., Cossu, C. & Depardon, S.2009A note on optimal transient growth in turbulent channel flows. Phys. Fluids21 (1), 015109. · Zbl 1183.76425
[126] Reddy, S.C. & Henningson, D.S.1993Energy growth in viscous channel flows. J. Fluid Mech.252, 209-238. · Zbl 0789.76026
[127] Reddy, S.C., Schmid, P.J., Baggett, J.S. & Henningson, D.S.1998On the stability of streamwise streaks and transition thresholds in plane channel flows. J. Fluid Mech.365, 269-303. · Zbl 0927.76029
[128] Reed, H.L., Saric, W.S. & Arnal, D.1996Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech.28 (1), 389-428.
[129] Reynolds, W.C. & Tiederman, W.G.1967Stability of turbulent channel flow, with application to Malkus’s theory. J. Fluid Mech.27 (2), 253-272.
[130] Ricco, P. & Quadrio, M.2008Wall-oscillation conditions for drag reduction in turbulent channel flow. Intl J. Heat Fluid Flow29 (4), 891-902.
[131] Richardson, L.F.1922Weather Prediction by Numerical Process. Cambridge University Press. · JFM 48.0629.07
[132] Robinson, S.K.1991Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech.23 (1), 601-639.
[133] Rowley, C.W. & Dawson, S.T.M.2017Model reduction for flow analysis and control. Annu. Rev. Fluid Mech.49 (1), 387-417. · Zbl 1359.76111
[134] Rugh, Wilson J.1996Linear System Theory, 2nd edn.Prentice-Hall. · Zbl 0892.93002
[135] Saric, W.S., Reed, H.L. & White, E.B.2003Stability and transition of three-dimensional boundary layers. Annu. Rev. Fluid Mech.35 (1), 413-440. · Zbl 1039.76018
[136] Schmid, P.J. & Henningson, D.S.2012Stability and Transition in Shear Flows. Springer.
[137] Schmid, P.J.2007Nonmodal stability theory. Annu. Rev. Fluid Mech.39 (1), 129-162. · Zbl 1296.76055
[138] Schoppa, W. & Hussain, F.2002Coherent structure generation in near-wall turbulence. J. Fluid Mech.453, 57-108. · Zbl 1141.76408
[139] Skote, M., Haritonidis, J.H. & Henningson, D.S.2002Varicose instabilities in turbulent boundary layers. Phys. Fluids14 (7), 2309-2323. · Zbl 1185.76346
[140] Smits, A.J., Mckeon, B.J. & Marusic, I.2011High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech.43 (1), 353-375. · Zbl 1299.76002
[141] Swearingen, J.D. & Blackwelder, R.F.1987The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech.182, 255-290.
[142] Symon, S., Rosenberg, K., Dawson, S.T.M. & Mckeon, B.J.2018Non-normality and classification of amplification mechanisms in stability and resolvent analysis. Phys. Rev. Fluids3, 053902.
[143] Thomas, V.L., Farrell, B.F., Ioannou, P.J. & Gayme, D.F.2015A minimal model of self-sustaining turbulence. Phys. Fluids27 (10), 105104.
[144] Tissot, G., Lozano-Durán, A., Jiménez, J., Cordier, L. & Noack, B.R.2014Granger causality in wall-bounded turbulence. J. Phys.: Conf. Ser.506 (1), 012006.
[145] Toh, S. & Itano, T.2003A periodic-like solution in channel flow. J. Fluid Mech.481, 67-76. · Zbl 1034.76014
[146] Towne, A., Lozano-Durán, A. & Yang, X.2020Resolvent-based estimation of space-time flow statistics. J. Fluid Mech.883, A17. · Zbl 1430.76127
[147] Townsend, A.A.1976The Structure of Turbulent Shear Flow. Cambridge University Press. · Zbl 0325.76063
[148] Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A.1993Hydrodynamic stability without eigenvalues. Science261 (5121), 578-584. · Zbl 1226.76013
[149] Tuerke, F. & Jiménez, J.2013Simulations of turbulent channels with prescribed velocity profiles. J. Fluid Mech.723, 587-603. · Zbl 1287.76140
[150] Van Veen, L. & Kawahara, G.2011Homoclinic tangle on the edge of shear turbulence. Phys. Rev. Lett.107, 114501.
[151] Viswanath, D.2007Recurrent motions within plane Couette turbulence. J. Fluid Mech.580, 339-358. · Zbl 1175.76074
[152] Waleffe, F.1995Hydrodynamic stability and turbulence: beyond transients to a self-sustaining process. Stud. Appl. Maths95 (3), 319-343. · Zbl 0838.76026
[153] Waleffe, F.1997On a self-sustaining process in shear flows. Phys. Fluids9 (4), 883-900.
[154] Waleffe, F.2001Exact coherent structures in channel flow. J. Fluid Mech.435, 93-102. · Zbl 0987.76034
[155] Wang, J., Gibson, J. & Waleffe, F.2007Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett.98, 204501.
[156] Wedin, H. & Kerswell, R.R.2004Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech.508, 333-371. · Zbl 1065.76072
[157] Willis, A.P., Cvitanović, P. & Avila, M.2013Revealing the state space of turbulent pipe flow by symmetry reduction. J. Fluid Mech.721, 514-540. · Zbl 1287.76155
[158] Wray, A.A.1990 Minimal storage time advancement schemes for spectral methods. NASA Tech. Rep. MS 202.
[159] Yu, X. & Liu, J.T.C.1991The secondary instability in Görtler flow. Phys. Fluids3 (8), 1845-1847. · Zbl 0825.76255
[160] Yu, X. & Liu, J.T.C.1994On the mechanism of sinuous and varicose modes in three-dimensional viscous secondary instability of nonlinear Görtler rolls. Phys. Fluids6 (2), 736-750. · Zbl 0848.76023
[161] Zare, A., Georgiou, T.T. & Jovanović, M.R.2020Stochastic dynamical modeling of turbulent flows. Annu. Rev. Control Robot. Auton. Syst.3 (1), 195-219.
[162] Zare, A., Jovanović, M.R. & Georgiou, T.T.2017Colour of turbulence. J. Fluid Mech.812, 636-680. · Zbl 1383.76303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.