×

zbMATH — the first resource for mathematics

Spherical symmetry as a test case for unconstrained hyperboloidal evolution. II: Gauge conditions. (English) Zbl 1386.83022
MSC:
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83-08 Computational methods for problems pertaining to relativity and gravitational theory
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
83C57 Black holes
83C10 Equations of motion in general relativity and gravitational theory
Software:
xAct
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barack L 1999 Late time dynamics of scalar perturbations outside black holes. 1. A Shell toy model Phys. Rev. D 59 044016 · Zbl 0949.83044
[2] Leaver E W 1986 Solutions to a generalized spheroidal wave equation J. Math. Phys.27 1238 · Zbl 0612.34041
[3] Leaver E W 1986 Spectral decomposition of the perturbation response of the Schwarzschild geometry Phys. Rev. D 34 384-408 · Zbl 1222.83053
[4] Penrose R 1963 Asymptotic properties of fields and space-times Phys. Rev. Lett.10 66-8
[5] Penrose R 1965 Zero rest mass fields including gravitation: asymptotic behavior Proc. R. Soc. A 284 159
[6] Friedrich H 1983 Cauchy problems for the conformal vacuum field equations in general relativity Commun. Math. Phys.91 445-72 · Zbl 0555.35116
[7] Frauendiener J 2004 Conformal infinity Living Rev. Relativ.7 1 (pages 21-22 and 25-35)
[8] Friedrich H 2002 Conformal Einstein Evolution pp 1-50 · Zbl 1054.83006
[9] Husa S 2003 Numerical Relativity with the Conformal Field Equations pp 159-92
[10] Husa S, Schneemann C, Vogel T and Zenginoğlu A 2006 Hyperboloidal data and evolution AIP Conf. Proc.841 306-13
[11] Frauendiener J and Vogel T 2005 Algebraic stability analysis of constraint propagation Class. Quantum Grav.22 1769-93 · Zbl 1073.83012
[12] Abbott B P et al 2016 Observation of gravitational waves from a binary black hole merger Phys. Rev. Lett.116 061102
[13] Abbott B P et al 2016 GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence Phys. Rev. Lett.116 241103
[14] Abbott B P et al 2016 Properties of the binary black hole merger GW150914 Phys. Rev. Lett.116 241102
[15] Abbott B P et al 2016 Binary black hole mergers in the first advanced LIGO observing run Phys. Rev. X 6 041015
[16] Boyle M and Mroue A H 2009 Extrapolating gravitational-wave data from numerical simulations Phys. Rev. D 80 124045
[17] Reisswig C, Bishop N, Pollney D and Szilagyi B 2009 Unambiguous determination of gravitational waveforms from binary black hole mergers Phys. Rev. Lett.103 221101 · Zbl 1187.83026
[18] Pretorius F 2005 Evolution of binary black hole spacetimes Phys. Rev. Lett.95 121101 · Zbl 1191.83026
[19] Campanelli M, Lousto C, Marronetti P and Zlochower Y 2006 Accurate evolutions of orbiting black-hole binaries without excision Phys. Rev. Lett.96 111101
[20] Baker J G, Centrella J, Choi D-I, Koppitz M and van Meter J 2006 Gravitational wave extraction from an inspiraling configuration of merging black holes Phys. Rev. Lett.96 111102
[21] Shibata M and Nakamura T 1995 Evolution of three-dimensional gravitational waves: harmonic slicing case Phys. Rev. D 52 5428-44 · Zbl 1250.83027
[22] Baumgarte T W and Shapiro S L 1999 On the numerical integration of Einstein’s field equations Phys. Rev. D 59 024007 · Zbl 1250.83004
[23] Bona C, Ledvinka T, Palenzuela C and Zacek M 2003 General-covariant evolution formalism for numerical relativity Phys. Rev. D 67 104005 · Zbl 1074.83003
[24] Hannam M, Husa S, Pollney D, Brügmann B and O’Murchadha N 2007 Geometry and regularity of moving punctures Phys. Rev. Lett.99 241102 · Zbl 1228.83070
[25] Hannam M, Husa S, Ohme F, Brügmann B and O’Murchadha N 2008 Wormholes and trumpets: the Schwarzschild spacetime for the moving-puncture generation Phys. Rev. D 78 064020
[26] Choptuik M W 1993 Universality and scaling in gravitational collapse of a massless scalar field Phys. Rev. Lett.70 9-12
[27] Tamburino L A and Winicour J H 1966 Gravitational fields in finite and conformal Bondi frames Phys. Rev.150 1039-53
[28] Penrose R and Rindler W 1984-1986 (Spinors and Space-Time vol 1 and 2) (Cambridge: Cambridge University Press) (Vol 1: https://doi.org/10.1017/CBO9780511564048 Vol 2: https://doi.org/10.1017/CBO9780511524486)
[29] Stewart J 1997 Advanced General Relativity (Cambridge: Cambridge University Press) · Zbl 0752.53048
[30] Andersson L 2002 Construction of hyperboloidal initial data The Conformal Structure of Space-Time(Lecture Notes in Physics vol 604) ed L Frauendiener and H Friedrich pp 183-94 · Zbl 1043.83004
[31] Rinne O 2010 An axisymmetric evolution code for the Einstein equations on hyperboloidal slices Class. Quantum Grav.27 035014
[32] Rinne O and Moncrief V 2013 Hyperboloidal Einstein-matter evolution and tails for scalar and Yang-Mills fields Class. Quantum Grav.30 095009
[33] Bardeen J M, Sarbach O and Buchman L T 2011 Tetrad formalism for numerical relativity on conformally compactified constant mean curvature hypersurfaces Phys. Rev. D 83 104045
[34] Morales M D and Sarbach O 2017 Evolution of scalar fields surrounding black holes on compactified constant mean curvature hypersurfaces Phys. Rev. D 95 044001
[35] Zenginoğlu A 2008 Hyperboloidal foliations and scri-fixing Class. Quantum Grav.25 145002
[36] Zenginoğlu A 2008 Hyperboloidal evolution with the Einstein equations Class. Quantum Grav.25 195025
[37] Zenginoğlu A 2008 A Hyperboloidal study of tail decay rates for scalar and Yang-Mills fields Class. Quantum Grav.25 175013
[38] Zenginoğlu A 2007 A conformal approach to numerical calculations of asymptotically flat spacetimes PhD Thesis Max Planck Institute for Gravitational Physics (AEI) and University of Potsdam, Institute of Physics and Astronomy, Potsdam
[39] Vañó-Viñuales A, Husa S and Hilditch D 2015 Spherical symmetry as a test case for unconstrained hyperboloidal evolution Class. Quantum Grav.32 175010
[40] Bona C, Palenzuela-Luque C and Bona-Casas C 2009 Elements of Numerical Relativity and Relativistic Hydrodynamics 2nd edn (New York: Springer) (https://doi.org/10.1007/978-3-642-01164-1) · Zbl 1176.85001
[41] Bona C, Massó J, Seidel E and Stela J 1995 A new formalism for numerical relativity Phys. Rev. Lett.75 600-3
[42] Alcubierre M et al 2003 Gauge conditions for long term numerical black hole evolutions without excision Phys. Rev. D 67 084023
[43] Friedrich H and Rendall A D 2000 The Cauchy Problem for the Einstein Equations pp 127-224 · Zbl 1006.83003
[44] Ohme F, Hannam M, Husa S and O’Murchadha N 2009 Stationary hyperboloidal slicings with evolved gauge conditions Class. Quantum Grav.26 175014 · Zbl 1176.83022
[45] Vañó-Viñuales A and Husa S 2017 Spherical symmetry as a test case for unconstrained hyperboloidal evolution III: black holes (in preparation)
[46] Buchman L T, Pfeiffer H P and Bardeen J M 2009 Black hole initial data on hyperboloidal slices Phys. Rev. D 80 084024
[47] Hilditch D 2015 Dual foliation formulations of general relativity (arXiv:1509.02071[gr-qc])
[48] Hilditch D, Harms E, Bugner M, Rueter H and Bruegmann B 2016 The evolution of hyperboloidal data with the dual foliation formalism: mathematical analysis and wave equation tests (arXiv:1609.08949[gr-qc])
[49] Schneemann C 2006 Numerische Berechnung von hyperboloidalen Anfangsdaten für die Einstein-Gleichungen Master’s Thesis Max Planck Institute for Gravitational Physics (AEI), Potsdam
[50] Zenginoglu A and Husa S 2006 Hyperboloidal foliations with scri-fixing in spherical symmetry Recent Developments in Theoretical and Experimental General Relativity, Gravitation, Relativistic Field Theories. Proc., 11th Marcel Grossmann Meeting, MG11(Berlin, Germany, 23-29 July 2006) pp 1624-6
[51] Zenginoğlu A, Nunez D and Husa S 2009 Gravitational perturbations of Schwarzschild spacetime at null infinity and the hyperboloidal initial value problem Class. Quantum Grav.26 035009
[52] Frauendiener J 1998 Numerical treatment of the hyperboloidal initial value problem for the vacuum Einstein equations. 2. The Evolution equations Phys. Rev. D 58 064003 · Zbl 0959.83003
[53] Wald R M 1984 General Relativity (Chicago: University of Chicago Press) (https://doi.org/10.7208/chicago/9780226870373.001.0001) · Zbl 0549.53001
[54] Vañó-Viñuales A 2015 Free evolution of the hyperboloidal initial value problem in spherical symmetry PhD Thesis U. Illes Balears, Palma
[55] Newman E and Penrose R 1962 An approach to gravitational radiation by a method of spin coefficients J. Math. Phys.3 566-78 · Zbl 0108.40905
[56] Gustafsson B, Kreiss H and Oliger J 1995 Time dependent problems and difference methods Pure and Applied Mathematics 2nd edn (New York: Wiley) (https://doi.org/10.1002/9781118548448) · Zbl 0843.65061
[57] Calabrese G, Hinder I and Husa S 2006 Numerical stability for finite difference approximations of Einstein’s equations J. Comput. Phys.218 607-34 · Zbl 1106.65080
[58] Husa S 2007 Numerical modeling of black holes as sources of gravitational waves in a nutshell Eur. Phys. J.152 183-207
[59] Arbona A, Bona C, Massó J and Stela J 1999 Robust evolution system for numerical relativity Phys. Rev. D 60 104014
[60] Alcubierre M, Brügmann B, Pollney D, Seidel E and Takahashi R 2001 Black hole excision for dynamic black holes Phys. Rev. D 64 061501
[61] Vañó-Viñuales A and Husa S 2015 Unconstrained hyperboloidal evolution of black holes in spherical symmetry with GBSSN and Z4c J. Phys.: Conf. Ser.600 012061
[62] Alcubierre M 1997 The appearance of coordinate shocks in hyperbolic formalisms of general relativity Phys. Rev. D 55 5981-91
[63] Alcubierre M 2003 Hyperbolic slicings of space-time: singularity avoidance and gauge shocks Class. Quantum Grav.20 607-24 · Zbl 1137.83354
[64] Reimann B, Alcubierre M, Gonzalez J A and Nunez D 2005 Constraint and gauge shocks in one-dimensional numerical relativity Phys. Rev. D 71 064021
[65] Alcubierre M 2005 Are gauge shocks really shocks? Class. Quantum Grav.22 4071-82 · Zbl 1075.83532
[66] Garfinkle D, Gundlach C and Hilditch D 2008 Comments on Bona-Masso type slicing conditions in long-term black hole evolutions Class. Quantum Grav.25 075007 · Zbl 1138.83005
[67] Bernstein D H 1993 Physics, astronomy, and astrophysics: a numerical study of the black hole plus Brill wave spacetime PhD Thesis Illinois Univ., Urbana-Champaign
[68] Anninos P et al 1995 Three-dimensional numerical relativity: The Evolution of black holes Phys. Rev. D 52 2059-82
[69] Brown J D 2009 Covariant formulations of BSSN and the standard gauge Phys. Rev. D 79 104029
[70] van Meter J R, Baker J G, Koppitz M and Choi D-I 2006 How to move a black hole without excision: gauge conditions for the numerical evolution of a moving puncture Phys. Rev. D 73 124011
[71] Gundlach C and Martin-Garcia J M 2006 Well-posedness of formulations of the Einstein equations with dynamical lapse and shift conditions Phys. Rev. D 74 024016
[72] Hilditch D and Richter R 2016 Hyperbolicity of physical theories with application to general relativity Phys. Rev. D 94 044028
[73] Alcubierre M et al 2005 Generalized harmonic spatial coordinates and hyperbolic shift conditions Phys. Rev. D 72 124018
[74] Husa S, Gonzalez J A, Hannam M, Brügmann B and Sperhake U 2008 Reducing phase error in long numerical binary black hole evolutions with sixth order finite differencing Class. Quantum Grav.25 105006
[75] Kreiss H and Oliger J 1973 Methods for the Approximate Solution of time Dependent Problems(GARP Publications Series vol 10) (Geneva: International Council of Scientific Unions, World Meteorological Organization)
[76] Babiuc M et al 2008 Implementation of standard testbeds for numerical relativity Class. Quantum Grav.25 125012 · Zbl 1144.83002
[77] Brandt S and Brügmann B 1997 A Simple construction of initial data for multiple black holes Phys. Rev. Lett.78 3606-9
[78] Vañó-Viñuales A and Husa S 2015 Free hyperboloidal evolution in spherical symmetry (arXiv:1512.00776 [gr-qc])
[79] Brügmann B 1999 Binary black hole mergers in 3d numerical relativity Int. J. Mod. Phys. D 8 85
[80] Brügmann B et al 2008 Calibration of moving puncture simulations Phys. Rev. D 77 024027
[81] Martín-García J M xAct: efficient tensor computer algebra for Mathematicawww.xact.es/
[82] Brown J D 2008 BSSN in spherical symmetry Class. Quantum Grav.25 205004
[83] Alic D, Bona-Casas C, Bona C, Rezzolla L and Palenzuela C 2012 Conformal and covariant formulation of the Z4 system with constraint-violation damping Phys. Rev. D 85 064040
[84] Sanchis-Gual N, Montero P J, Font J A, Müller E and Baumgarte T W 2014 Fully covariant and conformal formulation of the Z4 system in a reference-metric approach: comparison with the BSSN formulation in spherical symmetry Phys. Rev. D 89 104033 · Zbl 1329.83052
[85] Bernuzzi S and Hilditch D 2010 Constraint violation in free evolution schemes: comparing BSSNOK with a conformal decomposition of Z4 Phys. Rev. D 81 084003
[86] Weyhausen A, Bernuzzi S and Hilditch D 2012 Constraint damping for the Z4c formulation of general relativity Phys. Rev. D 85 024038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.