×

On the stability and interpolating properties of the hierarchical interface-enriched finite element method. (English) Zbl 1439.65143

Summary: The Hierarchical Interface-enriched Finite Element Method (HIFEM) is a technique for solving problems containing discontinuities in the field gradient using finite element meshes that do not conform (match) the domain morphology. The method is suitable for analyzing problems with complex geometries or when such geometry is not known a priori. Contrary to the eXtended/Generalized Finite Element Method (X/GFEM), enrichments are placed on nodes created along interfaces, and a recursive enrichment strategy is used to resolve multiple discontinuities crossing single elements. In this manuscript we rigorously study the approximating properties and stability of HIFEM. A study on the enrichments’ polynomial order shows that the formulation does not pass the patch test as long as enrichments do not replicate the approximating properties of partition of unity shape functions. Regarding stability, we show that condition numbers of system matrices grow at the same rate as those of standard FEM – and without requiring a preconditioner. This intrinsic stability is accomplished by means of a proper construction of enrichment functions that are properly scaled as interfaces approach mesh nodes. We further demonstrate that, even without scaling, using a simple preconditioner recovers stability. The method’s stability is further demonstrated on the modeling of challenging thermal and mechanical problems with complex morphologies.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
15A12 Conditioning of matrices
65F35 Numerical computation of matrix norms, conditioning, scaling
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics

Software:

CutFEM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rangarajan, R.; Lew, A. J., Universal meshes: A method for triangulating planar curved domains immersed in nonconforming meshes, Int. J. Numer. Meth. Eng., 98, 4, 236-264 (2014) · Zbl 1352.65617
[2] Soghrati, S.; Nagarajan, A.; Liang, B., Conforming to Interface structured adaptive mesh refinement technique for modeling heterogeneous materials, Comput. Mech., 125, 24-40 (2017)
[3] Nagarajan, A.; Soghrati, S., Conforming to interface structure adaptive mesh refinement: 3D algorithm and implementation, Comput. Mech. (2018) · Zbl 1471.74071
[4] Noble, D.; Newren, E.; Lechman, J., A conformal decomposition finite element method for modeling stationary fluid interface problems, Int. J. Numer. Meth. Fl., 63, 6, 725-742 (2010) · Zbl 1423.76266
[5] Kramer, R.; Noble, D., A conformal decomposition finite element method for arbitrary discontinuities on moving interfaces, Int. J. Numer. Meth. Eng., 100, 2, 87-110 (2014) · Zbl 1352.74383
[6] Oden, T. J.; Duarte, C. A.; Zienkiewicz, O. C., A new cloud-based hp finite element method, Comput. Methods Appl. Mech. Eng., 153, 1-2, 117-126 (1998) · Zbl 0956.74062
[7] Melnek, J. M.; Babuska, I., The partition of unity finite element method: Basic theory and applications, Comput. Methods Appl. Mech. Eng., 139, 1-4, 289-314 (1996) · Zbl 0881.65099
[8] Babuska, I.; Melnek, J. M., The partition of unity method, Int. J. Numer. Meth. Eng., 40, 4, 727-758 (1997) · Zbl 0949.65117
[9] Belytschko, T.; Gracie, R.; Ventura, G., A review of extended/generalized finite element methods for material modeling, Model. Simul. Mater. Sci. Eng., 17, Article 043001 pp. (2009)
[10] Babuška, I.; Caloz, G.; Osborn, J. E., Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal., 31, 4, 945-981 (1994) · Zbl 0807.65114
[11] Dolbow, J.; Harari, I., An efficient finite element method for embedded interface problems, Int. J. Numer. Meth. Eng., 78, 2, 229-252 (2008) · Zbl 1183.76803
[12] Annavarapu, C.; Hautefeuille, M.; Dolbow, J. E., A robust Nitsche’s formulation for interface problems, Comput. Methods Appl. Mech. Eng., 225-228, 44-54 (2012) · Zbl 1253.74096
[13] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput. Methods Appl. Mech. Eng., 193, 21-22, 2051-2067 (2004) · Zbl 1067.76576
[14] Wu, C. T.; Guo, Y.; Askari, E., Numerical modeling of composite solids using an immersed meshfree Galerkin method, Composites B, 45, 1, 1397-1413 (2013)
[15] Rao, B. N.; Rahman, S., A coupled meshless-finite element method for fracture analysis of cracks, Int. J. Press. Vessels Pip., 78, 9, 647-657 (2001)
[16] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Eng., 197, 45-48, 3768-3782 (2008) · Zbl 1194.74517
[17] Parvizian, J.; Düster, A.; Rank, E., Finite cell method h- and p-extension for embedded domain problems in solid mechanics, Comput. Mech., 41, 121-133 (2007) · Zbl 1162.74506
[18] Burman, E.; Claus, S.; Hansbo, P.; Larson, M.; Massing, A., Cutfem: discretizing geometry and partial differential equations, Int. J. Numer. Meth. Eng. (2014)
[19] Soghrati, S.; Aragón, A. M.; Duarte, C. A.; Geubelle, P. H., An interface-enriched generalized finite element method for problems with discontinuous gradient fields, Int. J. Numer. Meth. Eng., 89, 8, 991-1008 (2012) · Zbl 1242.76138
[20] Soghrati, S.; Geubelle, P. H., A 3D interface-enriched generalized finite element method for weakly discontinuous problems with complex internal geometries, Comput. Methods Appl. Mech. Eng., 217-220, 46-57 (2012) · Zbl 1253.74117
[21] Cuba-Ramos, A.; Aragón, A. M.; Soghrati, S.; Geubelle, P. H.; Molinari, J.-F., A new formulation for imposing Dirichlet boundary conditions on non-matching meshes, Int. J. Numer. Meth. Eng., 103, 6, 430-444 (2015) · Zbl 1352.65488
[22] Soghrati, S.; Thakre, P. R.; White, S. R.; Sottos, N. R.; Geubelle, P. H., Computational modeling and design of actively-cooled microvascular materials, Int. J. Heat Mass Transfer, 55, 19-20, 5309-5321 (2012)
[23] Aragón, A. M.; Soghrati, S.; Geubelle, P. H., Effect of in-plane deformation on the cohesive failure of heterogeneous adhesives, J. Mech. Phys. Solids, 61, 1600-1611 (2013)
[24] Aragón, A. M.; Simone, A., The discontinuity-enriched finite element method, Int. J. Numer. Meth. Eng., 112, 11, 1589-1613 (2017)
[25] Soghrati, S., Hierarchical interface-enriched finite element method: an automated technique for mesh-independent simulations, J. Comput. Phys., 275, 41-52 (2014) · Zbl 1349.82030
[26] Soghrati, S.; Ahmadian, H., 3D hierarchical interface-enriched finite element method: implementation and applications, J. Comput. Phys., 299, 45-55 (2015) · Zbl 1352.65551
[27] Soghrati, S.; Cruz, J. B., On the application of higher-order elements in the hierarchical interface-enriched finite element method, Int. J. Numer. Meth. Eng., 105, 6, 403-415 (2016)
[28] Soghrati, S.; Liang, B., Automated analysis of microstructural effects on the failure response of heterogeneous adhesives, Int. J. Solids Struct., 81, 250-261 (2016)
[29] Soghrati, S.; Duarte, C. A.; Geubelle, P. H., An adaptive interface-enriched generalized FEM for the treatment of problems with curved interfaces, Int. J. Numer. Meth. Eng., 102, 6, 1352-1370 (2015) · Zbl 1352.74436
[30] Babuška, I.; Banerjee, U., Stable generalized finite element method (SGFEM), Comput. Methods Appl. Mech. Eng., 201-204, 91-111 (2012) · Zbl 1239.74093
[31] Kergrene, K.; Babuška, I.; Banerjee, U., Stable generalized finite element method and associated iterative schemes; application to interface problems, Comput. Methods Appl. Mech. Eng., 305, 1-36 (2016) · Zbl 1425.74472
[32] Babuška, I.; Banerjee, U.; Kergrene, K., Strongly stable generalized finite element method: Application to interface problems, Comput. Methods Appl. Mech. Eng., 327, 58-92 (2017) · Zbl 1439.74385
[33] Babuška, I.; Szabó, B.; Katz, I., The p-Version of the finite element method, SIAM J. Numer. Anal., 18, 3, 515-545 (1981) · Zbl 0487.65059
[34] Soghrati, S.; Nagarajan, A.; Liang, B., Conforming to interface structured adaptive mesh refinement: New technique for the automated modeling of materials with complex microstructures, Finite Elem. Anal. Des., 125, 24-40 (2017)
[35] Nagarajan, A.; Soghrati, S., Conforming to interface structured adaptive mesh refinement: 3D algorithm and implementation, Comput. Mech., 62, 5, 1213-1238 (2018) · Zbl 1471.74071
[36] van den Boom, S. J.; Zhang, J.; van Keulen, F.; Aragón, A. M., A stable interface-enriched formulation for immersed domains with strong enforcement of essential boundary conditions, Int. J. Numer. Methods Eng., 120, 10, 1163-1183 (2019)
[37] Zhang, J.; van den Boom, S. J.; van Keulen, F.; Aragón, A. M., A stable discontinuity-enriched finite element method for 3-D problems containing weak and strong discontinuities, Comput. Methods Appl. Mech. Eng., 355, 1097-1123 (2019) · Zbl 1441.74284
[38] Matouš, K.; Kulkarni, M.; Geubelle, P., Multiscale cohesive failure modeling of heterogeneous adhesives, J. Mech. Phys. Solids, 56, 4, 1511-1533 (2008) · Zbl 1171.74433
[39] Liang, B.; Nagarajan, A.; Soghrati, S., Numerical quantification of the impact of microstructure on the mechanical behavior of particulate Al/SiC composites in 2D, Int. J. Solids Struct., 117, 91-103 (2017)
[40] Soghrati, S.; Najafi, A. R.; Lin, J. H.; Hughes, K. M.; White, S. R.; Sottos, N. R.; Geubelle, P. H., Computational analysis of actively-cooled 3D woven microvascular composites using a stabilized interface-enriched generalized finite element method, Int. J. Heat Mass Transfer, 65, 153-164 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.