×

Multi-scale analysis in elasto-viscoplasticity coupled with damage. (English) Zbl 1426.74058

Summary: The purpose of this study is to present a micromechanical approach, based on the transformation field analysis (TFA), proposed by Dvorak, which has been generalized at Onera in order to analyze the nonlinear behavior of heterogeneous materials in elasto-viscoplasticity coupled with damage. In such analysis, the macroscopic constitutive equations are not purely phenomenological but are built up from multi-scale approaches starting from the knowledge of the properties of the constituents at the microscopic or mesoscopic scales. The model can take into account some local characteristics that can evolve during the thermo-mechanical applied loads or the manufacturing process, like the grain size for metallic alloys or the fiber volume fraction for composites.
The determination of some specific tensors which are present in this formulation is closely linked to the microstructure morphology of heterogeneous materials constituting the macroscopic structure. For example, an Eshelby’s based approach is more appropriate to characterize polycrystalline materials with a random microstructure, while the homogenization of periodic media technique can be used for composite materials with a sufficiently regular microstructure. The proposed methodologies allowing to perform this nonlinear analysis across the scales are illustrated with examples based on the behavior of structures reinforced with a long fiber unidirectional metal matrix composite.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74E05 Inhomogeneity in solid mechanics
74A50 Structured surfaces and interfaces, coexistent phases
74A45 Theories of fracture and damage
74A60 Micromechanical theories
74E30 Composite and mixture properties
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aboudi, J., Pindera, M., Arnold, S., 2002. High Fidelity Generalized Method of Cells for Inelastic Periodic Multiphase Materials. NASA/TM-2002-211469.
[2] Berveiller, M.; Zaoui, A.: An extension of the self-consistent scheme to plastically flowing polycristal, J. mech. Phys. solids 6, 325-344 (1979) · Zbl 0395.73033 · doi:10.1016/0022-5096(78)90003-0
[3] Cailletaud, G.; Forest, S.; Jeulin, D.; Feyel, F.; Galliet, I.; Mounoury, V.; Quilici, S.: Some elements of microstructural mechanics, Comput. mater. Sci. 27, 351-374 (2003)
[4] Carrère, N.; Maire, J. F.; Kruch, S.; Chaboche, J. L.: Multi-scale analysis of sic/ti composites, Mater. sci. Eng. A 365, 275-281 (2004)
[5] Caty, O., 2008. Fatigue des Empilements de sphères creuses métalliques. Ph.D. Dissertation. Institut National des Sciences Appliquées de Lyon.
[6] Chaboche, J. -L.; Kruch, S.; Maire, J. -F.; Pottier, T.: Towards a micromechanics based inelastic and damage modelling of composites, Int. J. Plasticity 17, 411-439 (2001) · Zbl 0988.74006 · doi:10.1016/S0749-6419(00)00056-5
[7] Chaboche, J. -L.; Kanouté, P.; Roos, A.: On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites, Int. J. Plasticity 21, 1409-1434 (2005) · Zbl 1229.74150 · doi:10.1016/j.ijplas.2004.07.001
[8] Doghri, I.; Ouaar, A.: Homogenization of two-phase elasto-plastic composite materials and structures. Study of tangent operators, cyclic plasticity and numerical algorithms, Int. J. Solids struct. 40, No. 7, 1681-1712 (2003) · Zbl 1032.74624 · doi:10.1016/S0020-7683(03)00013-1
[9] Doghri, I.; Brassart, L.; Adam, L.; Gérard, J. -S.: A second moment incremental formulation for the mean-field homogenization of elasto-plastic composites, Int. J. Plasticity. 27, No. 3, 352-371 (2011) · Zbl 1426.74112
[10] Dvorak, G.: Transformation field analysis of inelastic composite materials, Proc. R. Soc. lond. A 437, 311-327 (1992) · Zbl 0748.73007 · doi:10.1098/rspa.1992.0063
[11] Dvorak, G.; Benveniste, Y.: On transformation strains and uniform fields in multiphase elastic media, Proc. R. Soc. lond. A 437, 291-310 (1992) · Zbl 0748.73003 · doi:10.1098/rspa.1992.0062
[12] Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. R. Soc. lond. A 241, 376-396 (1957) · Zbl 0079.39606 · doi:10.1098/rspa.1957.0133
[13] Feyel, F.; Chaboche, J. -L.: FE2 multi-scale approach for modelling the elasto-viscoplastic behaviour of long fibre sic/ti composite materials, Comput. methods appl. Mech. eng. 183, 309-330 (2000) · Zbl 0993.74062 · doi:10.1016/S0045-7825(99)00224-8
[14] Gao, Y.; Liu, Z. L.; You, X. C.; Zhouang, Z.: A hybrid multiscale computational framework of crystal plasticity at submicron scales, Comput. mater. Sci. 49, 672-681 (2010)
[15] Ghosh, S.: Micromechanical analysis and multi-scale modeling using the Voronoi cell finite element method, (2010)
[16] Groh, S.; Marin, E. B.; Horstemeyer, M. F.; Zbib, H. M.: Multiscale modelling of the plasticity in an aluminium single crystal, Int. J. Plasticity 25, 1456-1473 (2009) · Zbl 1165.74013 · doi:10.1016/j.ijplas.2008.11.003
[17] Hill, R.: A self-consistent mechanics of composites materials, J. mech. Phys. solids 13, 213-222 (1965)
[18] Hobbiebrunken, T.; Hojo, M.; Jin, K. K.; Ha, S. K.: Influence of non-uniform fiber arrangement on microscopic stress and failure initiation in thermally and transversely loaded CF/epoxy laminated composites, Compos. sci. Technol. 68, 3107-3113 (2008)
[19] Kanouté, P.; Chaboche, J. -L.; Boso, D.; Schrefler, B.: Multi-scale methods for composites: a review, Arch. comput. Methods eng. 16, 31-75 (2009) · Zbl 1170.74304 · doi:10.1007/s11831-008-9028-8
[20] Kruch, S.: Homogenized and relocalized mechanical fields, J. strain anal. 42, 215-226 (2007)
[21] Lee, S. B.; Lebensohn, R. A.; Rollet, A. D.: Modeling the viscoplastic micromechanical response of two-phase materials using fast Fourier transforms, Int. J. Plasticity. 27, No. 5, 707-727 (2011) · Zbl 1405.74012
[22] Lissenden, C. J.: Experimental investigation of initial and subsequent yield surfaces for laminated metal matrix composites, Int. J. Plasticity 26, 1606-1628 (2010) · Zbl 05994157
[23] Masson, R.; Zaoui, A.: Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials, J. mech. Phys. solids 47, 1543-1568 (1999) · Zbl 0976.74010 · doi:10.1016/S0022-5096(98)00106-9
[24] Mcdowell, D. L.: Viscoplasticity of heterogeneous metallic materials, Mater. sci. Eng. 62, 67-123 (2008)
[25] Mcdowell, D. L.: A perspective on trends in multi scale plasticity, Int. J. Plasticity 29, 1280-1309 (2010) · Zbl 1402.74022
[26] Mercier, S.; Molinari, A.: Homogenization of elastic – viscoplastic heterogeneous materials: self-consistent and mori – tanaka schemes, Int. J. Plasticity 25, 1024-1048 (2009) · Zbl 1162.74037 · doi:10.1016/j.ijplas.2008.08.006
[27] Michel, J. -C.; Suquet, P.: Nonuniform transformation field analysis, Int. J. Solids struct. 40, 6937-6955 (2003) · Zbl 1057.74031 · doi:10.1016/S0020-7683(03)00346-9
[28] Michel, J.-C., Suquet, P., 2009. Nonuniform transformation field analysis: a reduced model for multi-scale nonlinear problems in solid mechanics. In: Galvanetto, U., Aliabadi, F. (Eds.), Multi-scale Modelling in Solid Mechanics – Computational Approaches, pp. 159 – 206. · Zbl 1296.74089
[29] Moulinec, H.; Suquet, P.: A FFT-based numerical method for computing the mechanical properties of composites from images of their microstructure, Microstructure property interaction in composite materials (1995) · Zbl 0954.74079
[30] Moulinec, H.; Suquet, P.: Intraphse strain heterogeneity in nonlinear composites: a computational approach, Eur. J. Mech. A. Solids 22, 751-770 (2003) · Zbl 1032.74508 · doi:10.1016/S0997-7538(03)00079-2
[31] Needleman, A.: A continuum model for void nucleation by inclusion debonding, J. appl. Mech. 54, 525-531 (1987) · Zbl 0626.73010 · doi:10.1115/1.3173064
[32] Passilly, B.; Kanouté, P.; Leroy, F. -H.; Mévrel, R.: High temperature instrumented microindentation. Applications to thermal barrier coatings constituent materials, Philos. mag. 86, 5739-5752 (2006)
[33] Pierard, O.; Llorca, J.; Segurado, J.; Doghri, I.: Micromechanics of particle-reinforced elasto-viscoplastic composites: finite element simulations versus affine homogenizattion, Int. J. Plasticity 23, 1041-1060 (2007) · Zbl 1119.74014 · doi:10.1016/j.ijplas.2006.09.003
[34] Castañeda, P. Ponte: Second order homogenization estimates for nonlinear composites incorporating field fluctuations: 1, Theor. J. Mech. phys. Solids 50, 737-757 (2002) · Zbl 1116.74412 · doi:10.1016/S0022-5096(01)00099-0
[35] Castañeda, P. Ponte; Suquet, P.: Nonlinear composites, Adv. appl. Mech. 34, 171-302 (1998) · Zbl 0889.73049
[36] Pottier, T., 1998. Modélisation multiéchelle du comportement et de l’endommagement de composites à matrice métallique. Ph.D. Dissertation. Ecole Nationale des Ponts et Chaussées.
[37] St-Pierre, L.; Héripré, E.; Dexet, M.; Crépin, J.; Bertolino, G.; Bilger, N.: 3D simulations of microstructure and comparison with experimental microstructure coming from O.I.M analysis, Int. J. Plasticity 24, No. 9, 1516-1532 (2008) · Zbl 1338.74020
[38] Tvergaard, V., 1990. Micromechanical modelling of fibre debonding in metal reinforced by short fibres. Inelastic deformation of composites materials. In: Dvorak, G., (Ed.), IUTAM Symposium, Troy, New York, USA.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.