×

Super-twisting sliding mode control for aircraft at high angle of attack based on finite-time extended state observer. (English) Zbl 1434.93064

Summary: This paper proposes a finite-time decoupling control strategy for aircraft with thrust vector at high angle of attack maneuver. Firstly, the nonlinear mathematical model of the aircraft is presented. Taking into account the insufficiency of the aerodynamic control surface, a thrust vector model with double nozzles is added. Subsequently, a three-channel decoupling control scheme based on finite-time extended state observer is employed to realize the high angle of attack maneuver. Strong coupling among different channels, aerodynamic uncertainties and other unmodeled dynamics are regarded as total disturbance and estimated by a finite-time extended state observer. Super-twisting (SWT) sliding mode control is utilized to obtain expected performance and finite-time stability. The daisy chain method is adopted to realize the control allocation. Finally, the numerical simulations are provided to demonstrate the effectiveness and robustness of the proposed methodology.

MSC:

93C95 Application models in control theory
93D09 Robust stability
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wu, D.; Chen, M.; Gong, H., Robust control of post-stall pitching maneuver based on finite-time observers, ISA Trans., 70, 4, 53-63 (2017) · doi:10.1016/j.isatra.2017.06.015
[2] Ozgur, A., Kemal, O.: High-alpha flight maneuverability enhancement of a twin engine fighter-bomber aircraft for air combat superiority using thrust-vectoring control, In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 1-26 (2006)
[3] Ericsson, L., Challenges in high-alpha vehicle dynamics, Prog. Aerosp. Sci., 31, 4, 291-334 (1995) · doi:10.1016/0376-0421(95)00002-G
[4] Yang, J., Zhu, J.: A hybrid NDI control method for the high-alpha super-maneuver flight control. In: Proceedings of American Control Conference, pp. 6747-6753 (2016)
[5] Choudhary, SK, Optimal feedback control of a twin rotor MIMO system, Int. J. Simul. Model., 37, 1, 46-53 (2017) · doi:10.1080/02286203.2016.1233008
[6] Zhang, L.; Wang, S.; Karimi, HR; Jasra, A., Robust finite-time control of switched linear systems and application to a class of servomechanism systems, IEEE-ASME Trans. Mechatron., 20, 5, 2476-2485 (2015) · doi:10.1109/TMECH.2014.2385796
[7] Choudhary, SK, Optimal feedback control of twin rotor MIMO system with a prescribed degree of stability, Int. J. Intell. Unman. Syst., 20, 5, 2476-2485 (2015)
[8] Snell, S.; Enns, D.; Garrard, J., Nonlinear inversion flight control for a supermaneuverable aircraft, J. Guid. Control Dyn., 15, 4, 976-984 (1992) · doi:10.2514/3.20932
[9] Adams, R.; Buffington, J.; Banda, S., Design of nonlinear control laws for high-angle-of-attack flight, J. Guid. Control Dyn., 17, 4, 737-746 (1994) · Zbl 0925.93353 · doi:10.2514/3.21262
[10] Ronald, H.; Cheng, P., Design for robust aircraft flight control, J. Aircr., 17, 1, 1-12 (2017)
[11] Sharma, M.: Flight-path angle control via neuro-adaptive backstepping. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp. 1-8 (2002)
[12] Sonneveldt, L.; Chu, Q.; Mulder, J., Nonlinear flight control design using constrained adaptive backstepping, J. Guid. Control Dyn., 30, 2, 322-336 (2007) · doi:10.2514/1.25834
[13] Farrell, J., Polycarpou, M., Sharma, M.: Adaptive backstepping with magnitude, rate, and bandwidth constraints: Aircraft longitude control. In: Proceedings of American Control Conference, pp. 3898-3904 (2003)
[14] Han, J., From PID to active disturbance rejection control, IEEE Trans. Ind. Electron., 56, 3, 900-906 (2009) · doi:10.1109/TIE.2008.2011621
[15] Gao, Z., On the centrality of disturbance rejection in automatic control, ISA Trans., 53, 850-857 (2014) · doi:10.1016/j.isatra.2013.09.012
[16] Luo, S.; Sun, Q.; Sun, M.; Tan, P.; Wu, W.; Sun, H.; Chen, Z., On decoupling trajectory tracking control of unmanned powered parafoil using ADRC-based coupling analysis and dynamic feedforward compensation, Nonlinear Dyn., 92, 4, 1619-1635 (2018) · doi:10.1007/s11071-018-4150-0
[17] Aboudonia, A.; El-Badawy, A.; Rashad, R., Active anti-disturbance control of a quadrotor unmanned aerial vehicle using the command-filtering backstepping approach, Nonlinear Dyn., 90, 1, 581-597 (2017) · Zbl 1390.93557 · doi:10.1007/s11071-017-3683-y
[18] Zhang, C.; Yang, J.; Li, S.; Yang, N., A generalized active disturbance rejection control method for nonlinear uncertain systems subject to additive disturbance, Nonlinear Dyn., 83, 4, 2361-2372 (2016) · Zbl 1353.93075 · doi:10.1007/s11071-015-2487-1
[19] Yu, Y.; Yuan, Y.; Yang, H., Nonlinear sampled-data ESO-based active disturbance rejection control for networked control systems with actuator saturation, Nonlinear Dyn., 95, 2, 1415-1434 (2019) · doi:10.1007/s11071-018-4636-9
[20] Raj, K.; Muthukumar, V.; Singh, SN; Lee, KW, Finite-time sliding mode and super-twisting control of fighter aircraft, Aerosp. Sci. Technol., 82, 5, 487-498 (2018) · doi:10.1016/j.ast.2018.09.028
[21] Utkin, VI; Guldner, J.; Shi, J., Sliding Modes Control in Electromechanical Systems (1999), London: Taylor and Francis, London
[22] Emelyanov, SV; Korovin, SV; Levantovsky, LV, Higher order sliding modes incontrol system, Differ. Equ., 29, 11, 1627-1647 (1993) · Zbl 0815.93015
[23] Defoort, M.; Floquet, T.; Kokosy, A., A novel high order sliding mode control scheme, Syst. Control Lett., 58, 2, 102-108 (2009) · Zbl 1155.93349 · doi:10.1016/j.sysconle.2008.09.004
[24] Levant, A., Sliding order and sliding accuracy in sliding mode control, Int. J. Control, 58, 6, 1247-1263 (1993) · Zbl 0789.93063 · doi:10.1080/00207179308923053
[25] Levant, A., Principles of 2-sliding mode design, Automatica, 43, 4, 576-586 (2007) · Zbl 1261.93027 · doi:10.1016/j.automatica.2006.10.008
[26] Moreno, JA; Osorio, M., Strict Lyapunov functions for the super-twisting algorithm, IEEE Trans. Autom. Control, 57, 4, 1035-1040 (2012) · Zbl 1369.93568 · doi:10.1109/TAC.2012.2186179
[27] Nagesh, I.; Edwards, C., A multivariable super-twisting sliding mode approach, Automatica, 50, 3, 984-988 (2014) · Zbl 1298.93108 · doi:10.1016/j.automatica.2013.12.032
[28] Defoort, M.; Nollet, F.; Floquet, T., A third-order sliding-mode controller for a stepper motor, IEEE Trans. Ind. Electron., 56, 9, 3337-3346 (2009) · doi:10.1109/TIE.2009.2026378
[29] Mobayen, S.; Tchier, F.; Ragoub, L., Design of an adaptive tracker for n-link rigid robotic manipulators based on super-twisting global nonlinear sliding mode control, Int. J. Syst. Sci., 48, 9, 1990-2002 (2017) · Zbl 1371.93137 · doi:10.1080/00207721.2017.1299812
[30] Haghighi, DA; Mobayen, S., Design of an adaptive super-twisting decoupled terminal sliding mode control scheme for a class of fourth-order systems, ISA Trans., 75, 216-225 (2018) · doi:10.1016/j.isatra.2018.02.006
[31] Nasiri, M., Mobayen, S., Zhu, Q.M.: Super-twisting sliding mode control for gearless PMSG-based wind turbine. Complexity, Early Access 1-15 (2019). 10.1155/2019/6141607
[32] Qin, Y.; Rath, J.; Hu, C.; Sentouh, C.; Wang, R., Adaptive nonlinear active suspension control based on a robust road classifier with a modified super-twisting algorithm, Nonlinear Dyn., 97, 4, 2425-2442 (2019) · doi:10.1007/s11071-019-05138-8
[33] Levant, A., High-order sliding modes, differentiation and output-feedback control, Int. J. Control, 76, 9, 924-941 (2003) · Zbl 1049.93014 · doi:10.1080/0020717031000099029
[34] Wang, X.; Lin, H., Design and frequency analysis of continuous finite-time-convergent differentiator, Aerosp. Sci. Technol., 18, 1, 69-78 (2012) · doi:10.1016/j.ast.2011.04.005
[35] Davila, J.; Fridman, L.; Levant, A., Second-order sliding-mode observer for mechanical systems, IEEE Trans. Autom. Control, 50, 11, 1785-1789 (2005) · Zbl 1365.93071 · doi:10.1109/TAC.2005.858636
[36] Lu, K.; Xia, Y., Finite-time attitude control for rigid spacecraft-based on adaptive super-twisting algorithm, IET Control Theory Appl., 8, 15, 1465-1477 (2014) · doi:10.1049/iet-cta.2013.0885
[37] Levant, A.; Pridor, A.; Gitizadeh, R.; Yaesh, I.; Benasher, J., Aircraft pitch control via second-order sliding technique, J. Guid. Control Dyn., 23, 4, 586-594 (2000) · doi:10.2514/2.4591
[38] Raj, K., Muthukumar, V., Singh, S.: Robust higher-order sliding mode control systems for roll-coupled maneuvers of aircraft using output feedback. In: Proceedings of 2018 Atmospheric Flight Mechanics Conference, pp. 1-22 (2018)
[39] Zong, Q.; Dong, Q.; Wang, F.; Tian, B., Super twisting sliding mode control for a flexible air-breathing hypersonic vehicle based on disturbance observer, Sci. China Inf. Sci., 58, 7, 1-15 (2015) · doi:10.1007/s11432-015-5350-6
[40] Jiang, T.; Lin, D.; Song, T., Finite-time control for small-scale unmanned helicopter with disturbances, Nonlinear Dyn., 96, 3, 1747-1763 (2019) · Zbl 1437.93114 · doi:10.1007/s11071-019-04882-1
[41] Stevens, B.; Lewis, F., Aircraft Control and Simulation (2007), Hoboken: Wiley, Hoboken
[42] Basin, M.; Yu, P.; Shtessel, Y., Finite- and fixed-time differentiators utilising HOSM techniques, IET Control Theory Appl., 11, 8, 1144-1152 (2016) · doi:10.1049/iet-cta.2016.1256
[43] Bhat, S.; Bernstein, D., Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38, 3, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[44] Liu, J.; Sun, M.; Chen, Z.; Sun, Q., Practical coupling rejection control for Herbst maneuver with thrust vector, AIAA J. Aircr., 56, 4, 1726-1734 (2019) · doi:10.2514/1.C035338
[45] Mukherjee, K., Thomas, P., Manoranjan, S.: Automatic recovery of a combat aircraft from a completed cobra and Herbst maneuver: a sliding mode control based scheme. In: Proceedings of 2nd Indian Control Conference, pp. 259-266 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.