×

Relating renormalizability of \(D\)-dimensional higher-order electromagnetic and gravitational models to the classical potential at the origin. (English) Zbl 1360.83064

Summary: Simple prescriptions for computing the \(D\)-dimensional classical potential related to electromagnetic and gravitational models, based on the functional generator, are built out. These recipes are employed afterward as a support for probing the premise that renormalizable higher-order systems have a finite classical potential at the origin. It is also shown that the opposite of the conjecture above is not true. In other words, if a higher-order model is renormalizable, it is necessarily endowed with a finite classical potential at the origin, but the reverse of this statement is untrue. The systems used to check the conjecture were \(D\)-dimensional fourth-order Lee-Wick electrodynamics, and the \(D\)-dimensional fourth- and sixth-order gravity models. A special attention is devoted to New Massive Gravity (NMG) since it was the analysis of this model that inspired our surmise. In particular, we made use of our premise to resolve trivially the issue of the renormalizability of NMG, which was initially considered to be renormalizable, but it was shown some years later to be non-renormalizable. We remark that our analysis is restricted to local models in which the propagator has simple and real poles.

MSC:

83E15 Kaluza-Klein and other higher-dimensional theories
78A25 Electromagnetic theory (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tseytlin, A., Phys. Lett. B363, 223 (1995).
[2] E. Tomboulis, arXiv:hep-th/9702146.
[3] Modesto, L., Phys. Rev. D86, 044005 (2012).
[4] Biswas, T., Gerwick, E., Koivisto, T. and Mazumdar, A., Phys. Rev. Lett.108, 031101 (2012).
[5] Accioly, A., Helayël-Neto, J., Scatena, E. and Turcati, R., Int. J. Mod. Phys. D22, 1342015 (2013).
[6] Modesto, L. and Rachwal, L., Nucl. Phys. B889, 228 (2014). · Zbl 1326.83061
[7] L. Modesto, arXiv:1402.6795.
[8] Bambi, C., Malafarina, D., Marciano, A. and Modesto, L., Phys. Lett. B734, 27 (2014). · Zbl 1380.83170
[9] Shapiro, I. L., Phys. Lett. B744, 67 (2015). · Zbl 1330.81219
[10] Frolov, V., Phys. Rev. Lett.115, 051102 (2015).
[11] Frolov, V., Zelnikov, A. and de Paula Netto, T., JHEP1506, 107 (2015).
[12] Modesto, L., de Paula Netto, T. and Shapiro, I. L., JHEP1504, 098 (2015).
[13] Accioly, A., Helayël-Neto, J., Correia, G., Brito, G., de Almeida, J. and Herdy, W., Phys. Rev. D93, 105042 (2016).
[14] A. Accioly, G. Correia, G. P. Brito and J. de Almeida, Renormalizability in D-dimensional higher-order gravity, submitted to Phys. Rev. D. · Zbl 1360.83064
[15] A. Accioly, B. L. Giacchini and I. L. Shapiro, arXiv:1610.05856.
[16] Giacchini, B. L., Phys. Lett. B766, 306 (2017). · Zbl 1397.83031
[17] J. Edholm, A. Koshelev and A. Mazumdar, arXiv:1604.01989.
[18] Modesto, L. and Shapiro, I. L., Phys. Lett. B755, 584 (2016).
[19] Modesto, L., Nucl. Phys. B909, 279 (2016).
[20] Stelle, K., Phys. Rev. D16, 953 (1977).
[21] Stelle, K., Gen. Relat. Gravit.9, 353 (1978).
[22] Bergshoeff, E., Hohm, O. and Townsend, P., Phys. Rev. Lett.102, 201301 (2009).
[23] Deser, S., Phys. Rev. Lett.103, 101302 (2009).
[24] Accioly, A., Helayël-Neto, J., Morais, J., Scatena, E. and Turcati, R., Phys. Rev. D83, 104005 (2011).
[25] Accioly, A., Helayël-Neto, J., Scatena, E., Morais, J., Turcati, R. and Pereira-Dias, B., Class. Quantum Grav.28, 225008 (2011). · Zbl 1230.83070
[26] Oda, I., JHEP0905, 064 (2009).
[27] Muneyuki, K. and Ohta, N., Phys. Rev. D85, 101501(R) (2012).
[28] Antoniadis, I. and Tomboulis, E., Phys. Rev. D33, 2756 (1986).
[29] Johnston, D., Nucl. Phys. B297, 721 (1988).
[30] Zee, A., Quantum Field Theory in a Nutshell, 2nd edn. (Princeton Univ. Press, 2010). · Zbl 1277.81001
[31] Ryder, L., Quantum Field Theory, 2nd edn. (Cambridge Univ. Press, 1966).
[32] Schulman, L., Techniques and Applications of Path Integration (Dover Publications, 2005). · Zbl 1141.28009
[33] Lee, T. and Wick, G., Nucl. Phys. B9, 209 (1969). · Zbl 0165.58203
[34] Lee, T. and Wick, G., Phys. Rev. D2, 1033 (1970). · Zbl 1227.81252
[35] Barone, F. A., Flores-Hidalgo, G. and Nogueira, A. A., Phys. Rev. D88, 105031 (2013).
[36] Cuzinato, R., de Melo, C., Medeiros, L. and Pompeia, P., Int. J. Mod. Phys. A26, 3641 (2011).
[37] Accioly, A. and Scatena, E., Mod. Phys. Lett. A25, 269 (2010). · Zbl 1184.81136
[38] Accioly, A., Gaete, P., Helayël-Neto, J., Scatena, E. and Turcati, R., Mod. Phys. Lett. A26, 1985 (2011). · Zbl 1274.81236
[39] A. Accioly, P. Gaete, J. Helayël-Neto, E. Scatena and R. Turcati, arXiv:1012.1045v2.
[40] Accioly, A., Helayël-Neto, J., Pereira-Dias, B. and Hernaski, C., Phys. Rev. D86, 105046 (2012).
[41] Galvão, C. and Pimentel, B., Can. J. Phys.66, 460 (1988). · Zbl 1043.78505
[42] Bufalo, R., Pimentel, B. and Zambrano, G., Phys. Rev. D83, 045007 (2011).
[43] Bertin, M., Pimentel, B. and Zambrano, G., J. Math. Phys. \((\) N. Y.\()52, 102902 (2011)\). · Zbl 1272.78004
[44] Frankel, J., Phys. Rev. E54, 5859 (1996).
[45] A. Zayats, arXiv:1306.3966.
[46] Santos, R. B. B., Mod. Phys. Lett. A26, 1909 (2011). · Zbl 1274.81241
[47] Moayedi, S., Setare, M. and Khosropour, B., Adv. High Energy Phys.2013, 657870 (2013). · Zbl 1328.81023
[48] Moayedi, S., Setare, M. and Khosropour, B., Int. J. Mod. Phys. A28, 1350142 (2013). · Zbl 1280.81150
[49] Gaete, P., Helayël-Neto, J. and Spallucci, E., J. Phys. A45, 215401 (2012). · Zbl 1245.81301
[50] Cuzinato, R., Melo, C. and Pompeia, P., Ann. Phys.322, 1211 (2007). · Zbl 1109.70019
[51] Kruglov, S., J. Phys. A43, 245403 (2010).
[52] Cho, I. and Kwon, O., Phys. Rev. D82, 025013 (2010).
[53] Accioly, A. and Dias, M., Phys. Rev. D70, 107705 (2004).
[54] Gaete, P., Int. J. Mod. Phys. A27, 1250061 (2012). · Zbl 1247.78033
[55] Gaete, P. and Spallucci, E., J. Phys. A45, 065401 (2012). · Zbl 1236.81189
[56] Barone, F. A. and Nogueira, A. A., Eur. Phys. J. C75, 339 (2015).
[57] Barone, F. A., Flores-Hidalgo, G. and Nogueira, A. A., Phys. Rev. D91, 027701 (2015).
[58] Accioly, A. and Dias, M., Int. J. Theor. Phys.44, 1123 (2005). · Zbl 1104.81079
[59] Veltman, M., Course 5. Quantum theory of gravitation, in Methods in Field Theory, eds. Balian, R. and Zinn-Justin, J. (World Scientific, 1981).
[60] Accioly, A., Azeredo, A. and Mukai, H., J. Math. Phys.43, 473 (2002). · Zbl 1052.83030
[61] Staruszkiewicz, A., Acta Phys. Pol.24, 735 (1963).
[62] Bergshoeff, E.et al., Class. Quantum Grav.27, 235012 (2010).
[63] Güllü, Ï. and Tekin, B., Phys. Rev. D80, 064033 (2009).
[64] A. Accioly et al., Interesting aspects of general higher-derivative gravity models in D dimensions, work in progress.
[65] A. Accioly et al., Renormalizability of D-dimensional extensions of the Lee-Wick model, work in progress.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.