×

Vector critical points and cone efficiency in nonsmooth vector optimization. (English) Zbl 1479.90185

Vector critical points in the senses of Fritz John and Karush-Kuhn-Tucker as well as weakly \(K\)-efficient and \(K\)-efficient solutions to nonsmooth vector optimization problems with cone and equality constraints are studied in the situation when each component of the involved functions is locally Lipschitz continuous under cone-\(FJ\)-pseudo-invexity and cone-\(KT\)-pseudo-invexity hypotheses and via the Clarke generalized gradient for vector-valued functions, respectively.

MSC:

90C29 Multi-objective and goal programming
90C46 Optimality conditions and duality in mathematical programming
90C26 Nonconvex programming, global optimization
49J52 Nonsmooth analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. Antczak, A new approach to multiobjective programming with a modified objective function, J. Global Optim. 27 (2003), no. 4, 485-495. · Zbl 1059.90126 · doi:10.1023/A:1026080604790
[2] —-, Optimality and duality for nonsmooth multiobjective programming problems with \(V-r\)-invexity, J. Global Optim. 45 (2009), no. 2, 319-334. · Zbl 1206.49035
[3] —-, Proper efficiency conditions and duality results for nonsmooth vector optimization in Banach spaces under \((\Phi,\rho)\)-invexity, Nonlinear Anal. 75 (2012), no. 6, 3107-3121. · Zbl 1235.90133
[4] M. Arana-Jiménez, A. Rufián-Lizana, R. Osuna-Gómez and G. Ruiz-Garzón, A characterization of pseudoinvexity in multiobjective programming, Math. Comput. Modelling 48 (2008), no. 11-12, 1719-1723. · Zbl 1187.90246
[5] M. Arana-Jiménez, G. Ruiz-Garzón and A. Rufián-Lizana, Pseudoinvexity: A good condition for efficiency and weak efficiency in multiobjective mathematical programming, characterization, in: Optimality Conditions in Vector Optimization, 1-16, Bentham Science, Sharjah, 2012.
[6] D. Bhatia and P. Jain, Generalized \((F,\rho)\)-convexity and duality for non smooth multi-objective programs, Optimization 31 (1994), no. 2, 239-244.
[7] N. Bourbaki, Topological Vector Spaces, Springer-Verlag, Berlin, 2003. · Zbl 1115.46002
[8] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, Cambridge, 2004. · Zbl 1058.90049
[9] J. W. Chen, Y. J. Cho, J. K. Kim and J. Li, Multiobjective optimization problems with modified objective functions and cone constraints and applications, J. Global Optim. 49 (2011), no. 1, 137-147. · Zbl 1230.90166 · doi:10.1007/s10898-010-9539-3
[10] J. W. Chen, Z. P. Wan and Y. Zheng, Optimality conditions and duality for nonsmooth multiobjective optimization problems with cone constraints and applications, http://www.optimization-online.org/DBFILE/2010/07/2672.pdf
[11] F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262. · Zbl 0307.26012
[12] —-, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1983. · Zbl 0582.49001
[13] B. D. Craven, Nondifferentiable optimization by smooth approximations, Optimization 17 (1986), no. 1, 3-17. · Zbl 0591.49016 · doi:10.1080/02331938608843097
[14] —-, Nonsmooth multiobjective programming, Numer. Funct. Anal. Optim. 10 (1989), no. 1-2, 49-64. · Zbl 0645.90076
[15] B. D. Craven and X. Q. Yang, A nonsmooth version of alternative theorem and nonsmooth multiobjective programming, Utilitas Math. 40 (1991), 117-128. · Zbl 0749.90063
[16] J. Dattorro, Convex Optimization and Euclidean Distance Geometry, Meboo, California, 2015, version 2011.04.25. · Zbl 1142.15014 · doi:10.1016/j.laa.2007.12.008
[17] N. Dunford and J. T. Schwartz, Linear Operators I: General Theory, Pure and Applied Mathematics 7, Interscience Publishers, New York, 1958. · Zbl 0084.10402
[18] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[19] G. Giorgi and A. Guerraggio, The notion of invexity in vector optimization: Smooth and nonsmooth case, in: Generalized Convexity, Generalized Monotonicity: Recent Results, (Luminy, 1996), 389-405, Nonconvex Optim. Appl. 27, Kluwer Academic Publishers, Dordrecht, 1998. · Zbl 0953.90049
[20] C. Gutiérrez, B. Jiménez, V. Novo and G. Ruiz-Garzón, Vector critical points and efficiency in vector optimization with Lipschitz functions, Optim. Lett. 10 (2016), no. 1, 47-62. · Zbl 1372.90100
[21] V. I. Ivanov, On the optimality of some classes of invex problems, Optim. Lett. 6 (2012), no. 1, 43-54. · Zbl 1280.90116 · doi:10.1007/s11590-010-0250-6
[22] M. H. Kim and G. M. Lee, On duality theorems for nonsmooth Lipschitz optimization problems, J. Optim. Theory Appl. 110 (2001), no. 3, 669-675. · Zbl 0987.90072 · doi:10.1023/A:1017596530143
[23] D. S. Kim and S. Schaible, Optimality and duality for invex nonsmooth multiobjective programming problems, Optimization 53 (2004), no. 2, 165-176. · Zbl 1144.90477 · doi:10.1080/0233193042000209435
[24] G. M. Lee, Nonsmooth invexity in multiobjective programming, J. Inform. Optim. Sci. 15 (1994), no. 1, 127-136. · Zbl 0826.90100 · doi:10.1080/02522667.1994.10699173
[25] L. Li and J. Li, Equivalence and existence of weak Pareto optima for multiobjective optimization problems with cone constraints, Appl. Math. Lett. 21 (2008), no. 6, 599-606. · Zbl 1191.90057 · doi:10.1016/j.aml.2007.07.012
[26] M. Minami, Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space, J. Optim. Theory Appl. 41 (1983), no. 3, 451-461. · Zbl 0502.90076 · doi:10.1007/BF00935364
[27] S. K. Mishra, S. Wang and K. K. Lai, \(V\)-invex Functions and Vector Optimization, Springer Optimization and its Applications 14, Springer, New York, 2008. · Zbl 1142.90002
[28] —-, Generalized Convexity and Vector Optimization, Nonconvex Optimization and its Applications 90, Springer-Verlag, Berlin, 2009. · Zbl 1207.49001
[29] R. Osuna-Gómez, A. Rufián-Lizana and P. Ruíz-Canales, Invex functions and generalized convexity in multiobjective programming, J. Optim. Theory Appl. 98 (1998), no. 3, 651-661. · Zbl 0921.90133
[30] A. L. Peressini, Ordered Topological Vector Spaces, Harper & Row, New York, 1967. · Zbl 0169.14801
[31] T. W. Reiland, Generalized invexity for nonsmooth vector-valued mappings, Numer. Funct. Anal. Optim. 10 (1989), no. 11-12, 1191-1202. · Zbl 0679.90071 · doi:10.1080/01630568908816352
[32] R. T. Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics, Princeton Paperbacks, Princeton University Press, Princeton, NJ, 1997. · Zbl 0932.90001
[33] W. Rudin, Functional Analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Company, New York, 1973. · Zbl 0253.46001
[34] M. Soleimani-damaneh, On optimality and duality for multiple-objective optimization under generalized type I univexity, Int. J. Comput. Math. 86 (2009), no. 8, 1345-1354. · Zbl 1192.90196 · doi:10.1080/00207160701864442
[35] S. K. Suneja, S. Khurana and M. Bhatia, Optimality and duality in vector optimization involving generalized type I functions over cones, J. Global Optim. 49 (2011), no. 1, 23-35. · Zbl 1230.90173 · doi:10.1007/s10898-009-9522-z
[36] S. K. Suneja, S. Khurana and Vani, Generalized nonsmooth invexity over cones in vector optimization, European J. Oper. Res. 186 (2008), no. 1, 28-40. · Zbl 1175.90365 · doi:10.1016/j.ejor.2007.01.047
[37] N. L. Tung and D. V. Luu, Optimality conditions for nonsmooth multiobjective optimization problems with general inequality constraints, J. Nonlinear Funct. Anal. 2018 (2018), Article ID 2, 1-15.
[38] N. D. Yen and P. H. Sach, On locally Lipschitz vector-valued invex functions, Bull. Austral. Math. Soc. 47 (1993), no. 2, 259-272. · Zbl 0786.90054 · doi:10.1017/S0004972700012491
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.