×

Likelihood ratio test-based chart for monitoring the process variability. (English) Zbl 1359.62544

Summary: This article proposes a new chart with the generalized likelihood ratio (GLR) test statistics for monitoring the process variance of a normally distributed process. The new chart can be easily designed and constructed and the computation results show that it provides quite a satisfactory performance, including the detection of the decrease in the variance and the individual observation at the sampling point which are very important in many practical applications. Average run length (ARL) comparisons between other procedures and the new chart are presented. The optimal parameters that can be used as a design aid in selecting specific parameter values based on the ARL are described. The application of our proposed method is illustrated by a real data example from chemical process control.

MSC:

62P30 Applications of statistics in engineering and industry; control charts
62F03 Parametric hypothesis testing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1002/qre.1414 · doi:10.1002/qre.1414
[2] DOI: 10.1002/qre.1514 · doi:10.1002/qre.1514
[3] DOI: 10.1080/00949655.2011.601416 · Zbl 1453.62776 · doi:10.1080/00949655.2011.601416
[4] DOI: 10.1016/j.cie.2012.03.013 · doi:10.1016/j.cie.2012.03.013
[5] Acosta-Mejia C. A., IIE Transactions 31 pp 569–
[6] DOI: 10.1016/j.cie.2013.11.004 · doi:10.1016/j.cie.2013.11.004
[7] DOI: 10.1016/j.ijpe.2012.12.015 · doi:10.1016/j.ijpe.2012.12.015
[8] Alt F. B., The Encyclopedia of Statistical Sciences pp 110–
[9] DOI: 10.1080/03610918.2011.639967 · Zbl 1327.62083 · doi:10.1080/03610918.2011.639967
[10] DOI: 10.1002/qre.686 · doi:10.1002/qre.686
[11] DOI: 10.1504/IJTM.2007.011807 · doi:10.1504/IJTM.2007.011807
[12] DOI: 10.1108/13552510910997724 · doi:10.1108/13552510910997724
[13] Castagliola P., Computational Statistics and Data Analysis 53 pp 2653–
[14] DOI: 10.1080/00949659408811559 · Zbl 0832.62089 · doi:10.1080/00949659408811559
[15] Chen G., Journal of Quality Technology 33 pp 223–
[16] Collani E. V., Journal of Quality Technology 21 pp 87–
[17] Crowder S. V., Journal of Quality Technology 24 pp 12–
[18] DOI: 10.1016/j.cie.2004.11.001 · doi:10.1016/j.cie.2004.11.001
[19] DOI: 10.1016/j.csda.2009.09.026 · Zbl 1464.62093 · doi:10.1016/j.csda.2009.09.026
[20] DOI: 10.1016/j.csda.2010.03.011 · Zbl 1284.62050 · doi:10.1016/j.csda.2010.03.011
[21] DOI: 10.1016/j.csda.2005.09.015 · Zbl 1157.62562 · doi:10.1016/j.csda.2005.09.015
[22] Montgomery D. C., Introduction to Statistical Quality Control · Zbl 0997.62503
[23] DOI: 10.1002/qre.1596 · doi:10.1002/qre.1596
[24] DOI: 10.1080/08982112.2013.848367 · doi:10.1080/08982112.2013.848367
[25] Nelson L. S., Journal of Quality Technology 22 pp 163–
[26] Ng C. H., Journal of Quality Technology 21 pp 242–
[27] DOI: 10.1080/00401706.1963.10490100 · doi:10.1080/00401706.1963.10490100
[28] DOI: 10.1080/03610910802049623 · Zbl 1145.62408 · doi:10.1080/03610910802049623
[29] DOI: 10.1002/qre.1598 · doi:10.1002/qre.1598
[30] DOI: 10.1007/s00170-013-5418-7 · doi:10.1007/s00170-013-5418-7
[31] DOI: 10.1080/00949650802174397 · Zbl 1179.62166 · doi:10.1080/00949650802174397
[32] DOI: 10.1080/00401706.2012.648869 · doi:10.1080/00401706.2012.648869
[33] Schoonhoven M., Journal of Quality Technology 43 (4) pp 307–
[34] Shu L., Journal of Quality Technology 40 pp 319–
[35] DOI: 10.1080/07474948708836122 · doi:10.1080/07474948708836122
[36] DOI: 10.1016/j.cie.2011.07.006 · doi:10.1016/j.cie.2011.07.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.