×

Extensions of the classical theorems for very well-poised hypergeometric functions. (English) Zbl 1416.33015

Summary: The well-known classical summation theorems due to Dougall and certain transformation formulas due to Whipple and Bailey for very well-poised hypergeometric functions are extended by introducing two additional pairs of numerator and denominator parameters with unit differences. These results have been derived with the help of well-known Bailey’s transform and a recently added extension of the Saalschütz theorem in the literature. The special cases of the results are shown to give some contiguous and parameters with integer differences type extensions of numerous hypergeometric summations. Applications of the results to a number of very interesting and general summations for Ramanujan type series involving \(\pi \) and some other constants are also discussed.

MSC:

33C20 Generalized hypergeometric series, \({}_pF_q\)
33C90 Applications of hypergeometric functions
40A25 Approximation to limiting values (summation of series, etc.)
65B10 Numerical summation of series
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adamchik, V., Wagon, S.: A simple formula for \[\pi\] π. Am. Math. Mon. 104, 852-855 (1997) · Zbl 0886.11073
[2] Bailey, D.H., Borwein, J.M.: Experimental mathematics: examples, methods and implications. Not. Am. Math. Soc. 52, 502-514 (2005) · Zbl 1087.65127
[3] Bailey, D.H., Borwein, P.B., Plouffe, S.: On the rapid computation of various polylogarithmic constants. Math. Comput. 66, 903-913 (1997) · Zbl 0879.11073 · doi:10.1090/S0025-5718-97-00856-9
[4] Bailey, W.N.: Some identities in combinatorial analysis. Proc. Lond. Math. Soc. (Ser. 2) 49, 421-435 (1947) · Zbl 0041.03403
[5] Bailey, W.N.: Identities of Rogers-Ramanujan type. Proc. Lond. Math. Soc. (Ser. 2) 50, 1-10 (1949) · Zbl 0031.39203
[6] Bailey, W.N.: Generalized hypergeometric series. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 32. Cambridge University Press, Cambridge (1935). Reprinted by Stechert-Hafner Service Agency, New York and London (1964)
[7] Baruah, N.D., Berndt, B.C., Chan, H.H.: Ramanujan’s series for \[\frac{1}{\pi }1\] π: a survey. Am. Math. Mon. 116, 567-587 (2009) · Zbl 1229.11162 · doi:10.1080/00029890.2009.11920975
[8] Berndt, B.C.: Ramanujan’s Notebooks. Part IV. Springer, Berlin (1994) · Zbl 0785.11001
[9] Borwein, J.M., Borwein, P.B.: Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity. Wiley, New York (1987) · Zbl 0611.10001
[10] Borwein, JM; Borwein, PB; Andrews, GE (ed.); Askey, RA (ed.); Berndt, BC (ed.); Ramanathan, KG (ed.); Rankin, RA (ed.), More Ramanujan-type series for \[\frac{1}{\pi }1\] π, 359-374 (1988), New York
[11] Borwein, J.M., Borwein, P.B.: Class number three Ramanujan type series for \[\frac{1}{\pi }1\] π. J. Comput. Appl. Math. 46, 281-290 (1993) · Zbl 0818.65010 · doi:10.1016/0377-0427(93)90302-R
[12] Brychkov, Y.A.: Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas. Chapman and Hall (CRC Press Company), Boca Raton (2008) · Zbl 1158.33001
[13] Chan, H.C.: More formulas for \[\pi\] π. Am. Math. Mon. 113, 452-455 (2006) · Zbl 1204.11187 · doi:10.1080/00029890.2006.11920326
[14] Chan, H.-H., Chan, S.-H., Liu, Z.: Domb’s numbers and Ramanujan-Sato type series for \[\frac{1}{\pi }1\] π. Adv. Math. 186, 396-410 (2004) · Zbl 1122.11087 · doi:10.1016/j.aim.2003.07.012
[15] Chan, H.-H., Liaw, W.-C.: Cubic modular equations and new Ramanujan-type series for \[\frac{1}{\pi }1\] π. Pac. J. Math. 192, 219-238 (2002) · Zbl 1125.11317 · doi:10.2140/pjm.2000.192.219
[16] Chan, H.-H., Liaw, W.-C., Tan, V.: Ramanujan’s class invariant \[\lambda_n\] λn and a new class of series for \[\frac{1}{\pi }1\] π. J. Lond. Math. Soc. (Ser. 2) 64, 93-106 (2001) · Zbl 1110.11300
[17] Chu, \[W.-C.: \pi\] π-formulas implied by Dougall’s summation theorem for \[_5{F_4}5\] F4-series. Ramanujan J. 26, 251-255 (2011) · Zbl 1242.33009 · doi:10.1007/s11139-010-9274-x
[18] Chu, W.-C.: Dougall’s bilateral \[_2{H_2}2\] H2-series and Ramanujan-like \[\pi\] π-formulae. Math. Comput. 80, 2223-2251 (2011) · Zbl 1233.33002 · doi:10.1090/S0025-5718-2011-02474-9
[19] Chudnovsky, V., Chudnovsky, G.V.: Approximations and complex multiplication according to Ramanujan. In: Andrews, G.E., Berndt, B.C., Rankin, R.A. (Eds.) Ramanujan Revisited, Proceedings of the Centenary Conference (Urbana-Champaign, Illinois, 1987), pp. 375-472. Academic, New York (1988) · Zbl 0647.10002
[20] Clare, P.: Invariant trilinear forms for spherical degenerate principal series of complex symplectic groups. Int. J. Math. 26, Article ID 1550107 (2015) · Zbl 1348.43012
[21] Clerc, J.L., Kobayashi, T., Ørsted, B., Pevzner, M.: Generalized Bernstein-Reznikov integrals. Math. Ann. 349, 395-431 (2011) · Zbl 1207.42021 · doi:10.1007/s00208-010-0516-4
[22] Gasper, G.: Summation, transformation and expansion formulas for bibasic series. Trans. Am. Math. Soc. 312, 257-277 (1989) · Zbl 0664.33010 · doi:10.1090/S0002-9947-1989-0953537-0
[23] Gessel, I., Stanton, D.: Strange evaluations of hypergeometric series. SIAM J. Math. Anal. 13, 295-308 (1982) · Zbl 0486.33003 · doi:10.1137/0513021
[24] Glaisher, J.W.L.: On series for \[\frac{1}{\pi }1\] π and \[\frac{1}{{\pi }^2}1\] π2. Q. J. Math. 37, 173-198 (1905)
[25] Gourévitch, B., Guillera, J.: Construction of binomial sums for \[\pi\] π and polylogarithmic constants inspired by BBP formulas. Appl. Math. E-Notes 7, 237-246 (2007) · Zbl 1169.40002
[26] Guillera, J.: About a new kind of Ramanujan-type series. Exp. Math. 12, 507-510 (2003) · Zbl 1083.33004 · doi:10.1080/10586458.2003.10504518
[27] Guillera, J.: A new method to obtain series for \[\frac{1}{\pi }1\] π and \[\frac{1}{{\pi }^2}1\] π2. Exp. Math. 15, 83-89 (2006) · Zbl 1113.11076 · doi:10.1080/10586458.2006.10128943
[28] Guillera, J.: A class of conjectured series representations for \[\frac{1}{\pi }1\] π. Exp. Math. 15, 409-414 (2006) · Zbl 1163.11031 · doi:10.1080/10586458.2006.10128971
[29] Guillera, J.: Generators of some Ramanujan formulas. Ramanujan J. 11, 41-48 (2006) · Zbl 1109.33029 · doi:10.1007/s11139-006-5306-y
[30] Guillera, J.: History of the formulas and algorithms for \[\pi\] π. Gac. R. Soc. Mat. Esp. 10, 159-178 (2007) · Zbl 1213.11203
[31] Guillera, J.: Hypergeometric identities for 10 extended Ramanujan-type series. Ramanujan J. 15, 219-234 (2008) · Zbl 1142.33002 · doi:10.1007/s11139-007-9074-0
[32] Joshi, C.M., Vyas, Y.: Extensions of Bailey’s transform and applications. Int. J. Math. Math. Sci. 2005, 1909-1923 (2005) · Zbl 1079.33004 · doi:10.1155/IJMMS.2005.1909
[33] Joshi, C.M., Vyas, Y.: Extensions of two \[q\] q-series expansions with application to biorthogonal rational functions. Appl. Math. Comput. 187, 219-222 (2007) · Zbl 1113.33010
[34] Joshi, C.M., Vyas, Y.: Bailey type transforms and applications. Jñānābha 45, 53-80 (2015) · Zbl 1358.33013
[35] Karlsson, P.W.: Hypergeometric functions with integral parameter differences. J. Math. Phys. 12, 270-271 (1971) · Zbl 0205.07504 · doi:10.1063/1.1665587
[36] Kim, Y.S., Rakha, M.A., Rathie, A.K.: Extensions of certain classical summation theorems for the series \[_2{F_1}(1)2\] F1(1), \[_3{F_2}(1)3\] F2(1) and \[_4{F_3}(1)4\] F3(1) with applications in Ramanujan’s summations. Int. J. Math. Math. Sci. 2010, Article ID 309503 (2010) · Zbl 1210.33012
[37] Kim, Y.S., Rathie, A.K.: A new proof of Saalschütz’s theorem for the series \[_3{F_2}(1)3\] F2(1) and its contiguous results with applications. Commun. Korean Math. Soc. 27, 129-135 (2012) · Zbl 1235.33002 · doi:10.4134/CKMS.2012.27.1.129
[38] Kim, Y.S., Rathie, A.K., Paris, R.B.: An extension of Saalschütz’s summation theorem for the series \[_{r+3}{F_{r+2}}(1)\] r+3Fr+2(1). Integral Transforms Spec. Funct. 24, 916-921 (2013) · Zbl 1286.33006 · doi:10.1080/10652469.2013.777721
[39] Lavoie, J.-L., Grondin, F., Rathie, A.K.: Generalizations of Watson’s theorem on the sum of a \[_3{F_2}(1)3\] F2(1). Indian J. Math. 34, 23-32 (1992) · Zbl 0793.33005
[40] Lavoie, J.-L., Grondin, F., Rathie, A.K.: Generalizations of Whipple’s theorem on the sum of a \[_3{F_2}(1)3\] F2(1). J. Comput. Appl. Math. 72, 293-300 (1996) · Zbl 0853.33005 · doi:10.1016/0377-0427(95)00279-0
[41] Lavoie, J.-L., Grondin, F., Rathie, A.K., Arora, K.: Generalizations of Dixon’s theorem on the sum of a \[_3{F_2}(1)3\] F2(1). Math. Comput. 205, 267-276 (1994) · Zbl 0793.33006
[42] Levrie, P.: Using Fourier-Legendre expansions to derive series for \[\frac{1}{\pi }1\] π and \[\frac{1}{{\pi }^2}1\] π2. Ramanujan J. 22, 221-230 (2010) · Zbl 1203.30005 · doi:10.1007/s11139-010-9222-9
[43] Lewanowicz, S.: Generalized Watson’s summation formula for \[_3{F_2}(1)3\] F2(1). J. Comput. Appl. Math. 86, 375-386 (1997) · Zbl 0903.33004 · doi:10.1016/S0377-0427(97)00170-2
[44] Liu, Z.-G.: Gauss summation and Ramanujan type series for \[\frac{1}{\pi }1\] π and \[\frac{1}{{\pi }^2}1\] π2. Int. J. Numb. Theory 8, 289-297 (2012) · Zbl 1241.33005 · doi:10.1142/S1793042112500169
[45] Liu, Z.-G.: A summation formula and Ramanujan type series. J. Math. Anal. Appl. 389, 1059-1065 (2012) · Zbl 1273.33007 · doi:10.1016/j.jmaa.2011.12.048
[46] Maier, R.S.: A generalization of Euler’s hypergeometric transformation. Trans. Am. Math. Soc. 358, 39-57 (2006) · Zbl 1078.33004 · doi:10.1090/S0002-9947-05-04045-6
[47] Maier, R.\[S.: PP\]-symbols, Heun identities, and \[_3{F_2}(1)3\] F2(1) identities. Contemp. Math. 471, 139-159 (2008) · Zbl 1185.33028 · doi:10.1090/conm/471/09211
[48] Miller, A.R.: A summation formula for Clausen’s series \[_3{F_2}(1)3\] F2(1) with an application to Goursat’s function \[_2{F_2}(1)2\] F2(1). J. Phys. A: Math. Theoret. 38, 3541-3545 (2005) · Zbl 1068.33009 · doi:10.1088/0305-4470/38/16/005
[49] Miller, A.R., Paris, R.B.: Certain transformations and summations for generalized hypergeometric series with integral parameter differences. Integral Transforms Spec. Funct. 22, 67-77 (2011) · Zbl 1217.33013 · doi:10.1080/10652469.2010.498001
[50] Miller, A.R., Paris, R.B.: Euler-type transformations for the generalized hypergeometric function \[_{r+2}{F_{r+1}}(x)\] r+2Fr+1(x). Z. Angew. Math. Phys. 62, 31-45 (2011) · Zbl 1225.33005 · doi:10.1007/s00033-010-0085-0
[51] Miller, A.R., Paris, R.B.: Transformation formulas for the generalized hypergeometric function with integral parameter differences. Rocky Mt. J. Math. 43, 291-327 (2013) · Zbl 1275.33009 · doi:10.1216/RMJ-2013-43-1-291
[52] Miller, A.R., Srivastava, H.M.: Karlsson-Minton summation theorems for the generalized hypergeometric series of unit argument. Integral Transforms Spec. Funct. 21, 603-612 (2010) · Zbl 1200.33007 · doi:10.1080/10652460903497259
[53] Panda, R.: A note on certain reducible cases of the generalized hypergeometric function. Nederl. Akad. Wetensch. Indag. Math. 38, 41-45 (1976) · Zbl 0303.33003 · doi:10.1016/1385-7258(76)90006-8
[54] Panda, R.: The reducible cases of certain generalized hypergeometric functions of several variables. Nederl. Akad. Wetensch. Indag. Math. 39, 469-476 (1977) · Zbl 0364.33004 · doi:10.1016/1385-7258(77)90062-2
[55] Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vol. 3. Gordon and Breach Publication, New York (1990) · Zbl 0967.00503
[56] Rainville, E.D.: Special Functions. MacMillan Company, New York (1960). Reprinted by Chelsea Publishing Company, Bronx, New York (1971) · Zbl 0092.06503
[57] Rakha, M.A., Rathie, A.K.: Extensions of Euler type II transformation and Saalschütz’s theorem. Bull. Korean Math. Soc. 48, 151-156 (2011) · Zbl 1214.33003 · doi:10.4134/BKMS.2011.48.1.151
[58] Rakha, M.A., Rathie, A.K.: Generalizations of classical summation theorems for the series \[_2{F_1}2\] F1 and \[_3{F_2}3\] F2 with applications. Integral Transforms Spec. Funct. 22, 823-840 (2011) · Zbl 1241.33006 · doi:10.1080/10652469.2010.549487
[59] Ramanujan, S.: Modular equations and approximations to \[\pi\] π. Q. J. Math. 45, 350-372 (1914) · JFM 45.1249.01
[60] Rathie, A.K., Paris, R.B.: An extension of the Euler-type transformation for the \[_3{F_2}3\] F2 series. Far East J. Math. Sci. 27, 43-48 (2007) · Zbl 1151.33006
[61] Rogers, M.D.: New \[_5{F_4}5\] F4 hypergeometric transformations, three-variable Mahler measures, and formulas for \[\frac{1}{\pi }1\] π. Ramanujan J. 18, 327-340 (2009) · Zbl 1226.11113 · doi:10.1007/s11139-007-9040-x
[62] Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966) · Zbl 0135.28101
[63] Srivastava, H.M.: Generalized hypergeometric functions with integral parameter differences. Nederl. Akad. Wetensch. Indag. Math. 35, 38-40 (1973) · Zbl 0243.33004 · doi:10.1016/1385-7258(73)90019-X
[64] Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series, Ellis Horwood Series: Mathematics and Its Applications. Halsted Press (Ellis Horwood Limited, Chichester) Wiley and Sons, New York (1985)
[65] Srivastava, H.M., Kashyap, B.R.K.: Special Functions in Queuing Theory and Related Stochastic Processes. Academic, New York (1982) · Zbl 0492.60089
[66] Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. Halsted Press (Ellis Horwood Limited, Chichester). Wiley, New York (1984) · Zbl 0535.33001
[67] Srivastava, R.: Some families of combinatorial and other series identities and their applications. Appl. Math. Comput. 218, 1077-1083 (2011) · Zbl 1250.05025
[68] Srivastava, R.: Some generalizations of Pochhammer’s symbol and their associated families of hypergeometric functions and hypergeometric polynomials. Appl. Math. Inf. Sci. 7, 2195-2206 (2013) · doi:10.12785/amis/070609
[69] Vidūnas, R.A.: Generalization of Kummer’s identity. Rocky Mt. J. Math. 32, 919-936 (2002) · Zbl 1046.33002 · doi:10.1216/rmjm/1030539701
[70] Wei, C., Gong, D.: Extensions of Ramanujan’s two formulas for \[\frac{1}{\pi }1\] π. J. Numb. Theory 133, 2206-2216 (2013) · Zbl 1297.11151 · doi:10.1016/j.jnt.2013.01.006
[71] Zheng, D.: Multisection method and further formulae for \[\pi\] π. Indian J. Pure Appl. Math. 139, 137-156 (2008) · Zbl 1170.11045
[72] Zudilin, W.: Very well-poised hypergeometric series and multiple integrals. Russian Math. Surv. 57, 824-826 (2002) · Zbl 1229.33011 · doi:10.1070/RM2002v057n04ABEH000542
[73] Zudilin, W.: Well-poised hypergeometric service for diophantine problems of zeta values. J. Théory Nombres Bordeaux. 15, 593-626 (2003) · Zbl 1156.11326 · doi:10.5802/jtnb.415
[74] Zudilin, W.: An Apéry-like difference equation for Catalan’s constant. Electron. J. Combin. 10, Article ID R14 (2003) · Zbl 1093.11075
[75] Zudilin, W.: Well-poised hypergeometric transformations of Euler-type multiple integrals. J. Lond. Math. Soc. (Ser. 2) 70, 215-230 (2004) · Zbl 1065.11054
[76] Zudilin, W.: Ramanujan-type formulae and irrationality measures of certain multiples of \[\pi\] π. Mat. Sb. 196, 51-66 (2005) · doi:10.4213/sm1376
[77] Zudilin, W.: More Ramanujan-type formulae for \[\frac{1}{{\pi }^2}1\] π2. Russian Math. Surv. 62, 634-636 (2007) · Zbl 1203.11088 · doi:10.1070/RM2007v062n03ABEH004420
[78] Zudilin, W.: Ramanujan-type formulas for \[\frac{1}{\pi }1\] π: A second wind? In: Yui, N., Verrill, H., Doran, C.F. (Eds.) Modular Forms and String Duality. Fields Institute Communications, vol. 54, pp. 179-188. American Mathematical Society and The Fields Institute for Research in Mathematical Sciences, Providence (2008) · Zbl 1159.11053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.